Exercice 10-9 : Localisation des valeurs propres – théorèmes de Guerschgorin

Il s'agit de démontrer les deux théorèmes de Guerschgorin.

a) Si x est un vecteur propre associé à la valeur propre λ , on a $Ax = \lambda x$ ou encore

$$\sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad 1 \le i \le n,$$

ce que l'on peut écrire, en isolant x_i ,

$$(a_{ii} - \lambda)x_i = -\sum_{j \neq i} a_{ij}x_j$$

d'où, en passant aux valeurs absolues,

$$|a_{ii} - \lambda||x_i| = |\sum_{j \neq i} a_{ij} x_j|.$$

On applique cette relation pour i = k

$$|a_{kk} - \lambda||x_k| = |\sum_{j \neq k} a_{kj} x_j| \le \sum_{j \neq k} |a_{kj}||x_j| \le |x_k| \sum_{j \neq k} |a_{kj}|$$

et donc

$$|a_{kk} - \lambda| \le \sum_{j \ne k} |a_{kj}| = r_k,$$

ce qui montre que l'image du nombre λ se trouve dans le disque d_k ou encore que les images des valeurs propres sont incluses dans la réunion des disques d_i .

b) D'après les définitions, $\mathbf{A}(0) = \mathbf{D}$ et $\mathbf{A}(1) = \mathbf{A}$. De même, $\lambda_i(0) = a_{ii}$ et $\lambda_i(1) = \lambda_i$. On admet que lorsque ε croît, $\lambda_i(\varepsilon)$ passe continument de la première à la deuxième valeur. Le disque $d_i(0)$ se réduit au point a_{ii} . Comme précédemment, les images des valeurs propres $\lambda_i(\varepsilon)$ sont contenues dans la réunion des disques $d_i(\varepsilon)$ de centre a_{ii} et de rayon croissant avec ε . Par suite de l'hypothèse de continuité, une image ne peut pas disparaître d'un disque pour apparaître dans un autre disjoint. On suppose que les disques $d_1(\varepsilon), \ldots, d_p(\varepsilon)$ grossissent pour former une région D disjointe des autres disques. D contient p images lorsque ε est petit et en contiendra donc encore p pour $\varepsilon = 1$.

On sait que la matrice transposée de A admet le même jeu de valeurs propres que A ellemême. On peut parfois obtenir des contraintes supplémentaires sur les valeurs propres en appliquant le théorème de Guerschgorin à A^T ou en définissant des disques associés aux colonnes de A.

c) À la matrice A correspondent les disques $d_1 = d(4,1)$, $d_2 = d(0,2)$, $d_3 = d(-4,2)$ (voir figure 1). En partant de la matrice transposée, on trouve $d'_1 = d(4,2)$, $d'_2 = d(0,2)$, $d'_3 = d(-4,1)$. On obtient ainsi trois régions disjointes, contenant chacune un racine.

La matrice B fournit les disques $d_1 = d(2,1)$, $d_2 = d(3,2)$ et $d_3 = d(4,1)$ (figure 2). Comme elle est symétrique, la transposée n'apporte pas d'information supplémentaire, mais on sait que les valeurs propres sont réelles.

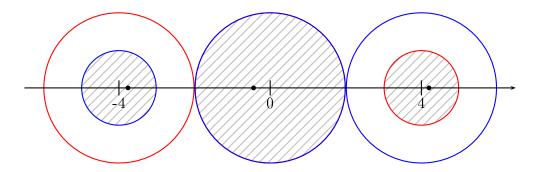


FIGURE 1 – Les disques de Guerschgorin pour la matrice A. Les images des valeurs propres sont contenues dans les régions hachurées. Les points noirs indiquent les valeurs calculées des λ_i .

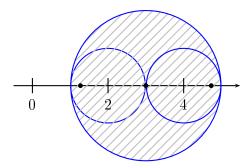


FIGURE 2 – Les disques de Guerschgorin pour la matrice B. Les images des valeurs propres sont contenues dans la région hachurée. Les points noirs indiquent les valeurs calculées des λ_i .