J.-P. Grivet

⇐ Retour au site web

Collisions atomiques

1 Introduction

Dans ce projet on étudie les collisions entre un atome d'hydrogène et une molécule de dihydrogène, les trois noyaux étant colinéaires. Lors de la collision, la réaction suivante peut se produire :

$$\mathrm{H}_A + \mathrm{H}_B \mathrm{-} \mathrm{H}_C \to \mathrm{H}_A \mathrm{-} \mathrm{H}_B + \mathrm{H}_C.$$

On parle alors de « collision réactive ». Il s'agit de la plus simple des réactions chimiques imaginables, qui a fait et qui fait encore l'objet d'innombrables études (voir par exemple [1–5]. L'étude théorique de ce processus se fait commodément en deux étapes. Tout d'abord, dans le cadre de l'approximation de Born–Oppenheimer (noyaux immobiles), on détermine, par un calcul quantique, l'énergie du système en fonction des coordonnées des atomes. Ce problème est supposé résolu ici et on donne (voir plus loin) l'expression analytique de la « surface d'énergie potentielle » (SEP) du système, en fonction des distances $r_{AB} \equiv R_1$ et $r_{BC} \equiv R_2$. Ensuite, on étudie le mouvement des noyaux soumis à ce potentiel. Ce mouvement peut être traité quantiquement ou par la mécanique classique : on prendra ici l'approche classique.

2 La surface d'énergie potentielle

La figure 1 définit les coordonnées utilisées. Les trois atomes d'hydrogène ont pour abscisses respectives x_A , x_B , x_C . Les trois distances internucléaires sont notées $R_1 = x_B - x_A$, $R_2 = x_C - x_B$, $R_3 = x_C - x_A = R_1 + R_2$. Nous choisissons comme variables indépendantes les quantités R_1 et R_2 .

FIGURE 1 – Géométrie de la collision H + H-H.

Nous allons utiliser la SEP proposée par Porter et Karplus [6,7] dont l'expression est relativement simple. Cette fonction a été obtenue par la méthode des « liaisons de valence » (« valence bond ») avec quelques approximations. En particulier, les auteurs ont imposé que, lorsque l'atome est loin de la molécule, on retrouve, pour H₂, la fonction potentiel très précise de Kolos et Roothaan [8]. La function Pascal ou Scilab donnée en appendice permet ainsi de calculer l'énergie du système connaissant les valeurs de R_1 et R_2 (en unités atomiques). L'origine des énergies est prise égale à l'énergie du système H + H₂ (les deux constituants étant loin l'un de l'autre); cette énergie est égale à l'énergie de dissociation de la molécule de dihydrogène, soit $E_0 = -4,7466$ eV, lorsque les deux noyaux sont immobiles à leur distance d'équilibre ($r_0 = 1,4083$ u.a. = 0,745 Å).

La SEP ressemble à une vallée en forme de L, entre deux collines. Il y a un col en $R_1 = R_2 = 1,701$ u.a. = 0,8998 Å pour une valeur de -4.350 eV. L'énergie d'activation de la réaction (au sens de la mécanique classique) est la différence entre l'énergie au col et l'énergie de la configuration de référence, soit 0,3966 eV.

3 Les équations du mouvement

Il est commode d'utiliser le formalisme de Hamilton, puisque l'on obtient ainsi des équations du premier ordre qui seront directement solubles par un algorithme numérique. On appelle m la masse de chaque atome, $T(x_A, x_B, x_C)$ l'énergie cinétique totale et $V(R_1, R_2)$ l'énergie potentielle. Aucun de ces jeux de variables n'est vraiment commode; il est préférable de définir des coordonnées généralisées q_i par la relation :

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{2} \\ 0 & -1 & 1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x_A \\ x_B \\ x_C \end{bmatrix}$$

 q_3 est l'abscisse du centre de masse ; la signification géométrique des deux autres variables se lit sur la figure 1. On a aussi les relations :

$$R_1 = q_1 - q_2/2$$
; $R_2 = q_2$

Si l'on forme les équations de Lagrange relatives aux q_i , on s'aperçoit que la coordonnée généralisée q_3 ne joue aucun rôle. En effet, q_3 ne figure pas dans V, si bien que l'équation relative à cette variable se réduit à

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_3} = 3m\ddot{q}_3 = 0;$$

le centre de masse est animé d'un mouvement uniforme. On peut donc se contenter de traiter un lagrangien réduit, fonction seulement de q_1 et q_2 . On calcule alors les quantités de mouvement généralisées par les relations

$$p_i = \frac{\partial L}{\partial \dot{q}_i}, \quad i = 1, 2.$$

En éliminant, dans l'expression de l'énergie cinétique, les q_i au profit des p_i on obtient le hamiltonien du problème sous la forme :

$$H = \frac{3}{4m}p_1^2 + \frac{1}{m}p_2^2 + V(q_1, q_2)$$

d'où l'on déduit aisément les quatre équations différentielles du premier ordre qui décrivent le mouvement.

4 Solution numérique

Avant d'aborder la résolution numérique du problème, il faut choisir un système d'unités. Calculer numériquement $h^2/2m$ en unités MKS revient à chercher les dépassements de capacité. Il est commode d'utiliser les unités atomiques (ou unités de Hartree [9], voir exercice 3-5), obtenues en faisant :

$$\frac{q_e^2}{4\pi\varepsilon_0} = m_e = \hbar = 1.$$

Toutes les variables du problème sont alors sans dimensions; on les note q_1^* , q_2^* , p_1^* et p_2^* . Les équations de Hamilton s'écrivent alors :

$$\dot{q}_{1}^{*} = \frac{3}{2m^{*}}p_{1}^{*}; \quad \dot{p}_{1}^{*} = -\frac{\partial V^{*}}{\partial R_{1}^{*}};$$
$$\dot{q}_{2}^{*} = \frac{2}{m^{*}}p_{2}^{*}; \quad \dot{p}_{2}^{*} = \frac{1}{2}\frac{\partial V^{*}}{\partial R_{1}^{*}} - \frac{\partial V^{*}}{\partial R_{2}^{*}}.$$

Pour assurer une précision suffisante, il convient de résoudre par une méthode d'ordre 4, avec un pas h égal à quelques unités atomiques de temps. La méthode Runge-Kutta d'ordre 4 [10] est un bon compromis entre stabilité et complexité.

Les conditions initiales peuvent être les suivantes. L'atome H_A situé à une grande distance R_{10} de la molécule H_BH_C , est lancé vers celle-ci à la vitesse initiale v_{A0} . La molécule est immobile, son centre de masse coïncidant avec l'origine. On peut choisir la distance initiale R_{20} de plusieurs façons. On peut poser, par exemple, $R_{20} = r_e$, la distance internucléaire d'équilibre dans la molécule H_2 .

5 Programmation

- 1. Vérifier les affirmations précédentes.
- 2. Trouver la valeur des unités de temps, de vitesse et d'énergie en unités atomiques.
- Représenter (courbes de niveaux ou perspective) la surface (fonction) d'énergie potentielle. Vous devriez obtenir un résultat analogue à la figure 2; vous trouverez dans [11] des détails supplémentaires.

FIGURE 2 – Vue de la surface d'énergie potentielle de H_3 au voisinage du col.

- 4. Écrire un programme de résolution des équations de Hamilton.
- 5. Sachant que l'énergie de vibration de la molécule de dihydrogène, dans l'état de nombre quantique n, vaut à peu près 0.546(n + 1/2) eV, étudier les vibrations de H₂ lorsque son énergie correspond à n = 0 ou à n = 9. (il s'agit de retrouver la figure 4 de l'article).
- 6. Étudier le mouvement du système pour diverses valeurs de l'énergie cinétique (vitesse) de l'atome incident. Quel est le seuil d'apparition de la réaction? Représenter la trajectoire du système dans l'espace (R_1, R_2) . Examiner le comportement de l'énergie totale pour des valeurs croissantes du pas d'intégration.

6 Pour aller plus loin

On peut choisir la condition initiale R_{20} de façon plus réaliste, moyennant plusieurs approximations. On pose $R_{20} = R_+$ ou R_- ; ces quantités sont les valeurs maximale et minimale de la distance internucléaire pendant le mouvement classique de vibration de la molécule, pour une énergie totale donnée (un nombre quantique de vibration donné). En variant légèrement R_{10} , on change la phase de la vibration moléculaire au moment de l'impact. On sait [12] que l'énergie totale de vibration de H₂ dans l'état de nombre quantique n vaut

$$E_n = \left(n + \frac{1}{2}\right)G_1 + \left(n + \frac{1}{2}\right)^2G_2,$$

avec les valeurs expérimentales $G_1 = 0.545546$ eV, $G_2 = -0.014978$ eV. D'autre part, on peut approcher l'énergie potentielle de H₂ par une fonction de Morse :

$$V = D \left[1 - e^{-\alpha(r - r_e)} \right]^2$$

où les valeurs empiriques des paramètres sont D = -4,7466 eV, $\alpha = 1,04435$, $r_e = 1,40083$ u.a. Pour déterminer les abscisses des points extrêmes R_+ et R_- , on écrit que l'énergie totale de vibration est égale à l'énergie potentielle de la liaison H-H pour la distance R_+ (ou R_-), ce qui conduit à une équation non linéaire que l'on résout par la méthode de Newton.

Siegbahn et Liu [13] ont calculé numériquement une surface potentielle assez précise et Truhlar et Horowitz [14,15] en ont donné une approximation analytique. On peut utiliser cette fonction à la place de celle de Porter et Karplus.

Kutz et coll. [16] proposent un logiciel (pour MacIntosh) qui illustre la réaction $F + H_2 \rightarrow HF + H$.

Les études, tant théoriques qu'expérimentales, des collisions atome/molécule ou molécule/molécule ont connu ces dernières années un développement exponentiel. Les références [17, 18] peuvent permettre une première orientation.

A SEP de Porter et Karplus : version Pascal

```
FUNCTION energy (r1, r2: REAL): REAL;
                                                                                                                                                                                     1
 {énergie potentielle du système H+H+H, en unités atomiques }
                                                                                                                                                                                     2
 {référence pour l'énergie: 3 atomes infiniment éloignés}
                                                                                                                                                                                     3
 {version Pascal}
                                                                                                                                                                                     4
CONST
                                                                                                                                                                                     5
d1 = 4.7466; d3 = 1.9668;
                                                                                                                                                                                     6
re = 1.40083;
                                                                                                                                                                                     7
alfa = 1.04435; beta = 1.000122;
                                                                                                                                                                                     8
delta = 28.2; eps = -17.5;
                                                                                                                                                                                     9
kapa = 0.6; lamda = 0.65;
                                                                                                                                                                                     10
                                                                                                                                                                                     11
VAR
                                                                                                                                                                                     12
qq, sss, temp: REAL;
                                                                                                                                                                                     13
r, c, q, j, e1, e3, s, zeta: ARRAY[1..3] OF REAL;
                                                                                                                                                                                     14
k: 1..3;
                                                                                                                                                                                     15
                                                                                                                                                                                     16
BEGIN
                                                                                                                                                                                     17
r[1] := r1; r[2] := r2; r[3] := r1 + r2;
                                                                                                                                                                                     18
FOR k := 1 TO 3 DO BEGIN
                                                                                                                                                                                     19
        zeta[k] := 1 + kapa*EXP(-lamda*r[k]);
                                                                                                                                                                                     20
        temp := r[k] * zeta[k];
                                                                                                                                                                                     21
        s[k] := (1 + temp + temp + temp/3) * EXP(-temp);
                                                                                                                                                                                     22
        temp := EXP(-alfa*(r[k]-re));
                                                                                                                                                                                     23
        e1[k] := d1*(SQR(temp) - 2*temp);
                                                                                                                                                                                     24
        temp := EXP(-beta * (r [k] - re));
                                                                                                                                                                                     25
        e3 [k] := d3 * (SQR(temp) + 2 * temp);
                                                                                                                                                                                     26
        q[k] := 0.5*(e1[k] + e3[k] + s[k]*s[k]*(e1[k]-e3[k]));
                                                                                                                                                                                     27
        j\,[\,k\,] \ := \ 0\,.\,5\,*\,(\,e\,1\,[\,k\,]\,-\,e\,3\,[\,k\,]\,) \ + \ 0\,.\,5\,*\,s\,[\,k\,]\,*\,s\,[\,k\,]\,*\,(\,e\,1\,[\,k\,]\,+\,e\,3\,[\,k\,]\,)\,;
                                                                                                                                                                                     28
FND:
                                                                                                                                                                                     29
j[1] := j[1] + s[1] * s[1] * delta * ((1+1/r[2]) * exp(-2*r[2]) +
                                                                                                                                                                                     30
                     (1+1/r[3])*\exp(-2*r[3]);
                                                                                                                                                                                     31
j[2] := j[2] + s[2] * s[2] * delta * ((1+1/r[1]) * exp(-2*r[1]) +
                                                                                                                                                                                     32
                    (1+1/r[3])*\exp(-2*r[3]));
                                                                                                                                                                                     33
j[3] := j[3] + s[3] * s[3] * delta * ((1+1/r[2]) * exp(-2*r[2]) +
                                                                                                                                                                                     34
                     (1+1/r[1])*\exp(-2*r[1]));
                                                                                                                                                                                     35
sss := s[1] * s[2] * s[3];
                                                                                                                                                                                     36
qq := q[1] + q[2] + q[3];
                                                                                                                                                                                     37
c[1] := SQR(1-sss) - 0.5*(SQR(s[1]*s[1]-s[2]*s[2]) +
                                                                                                                                                                                     38
                    SQR(s[2] * s[2] - s[3] * s[3]) + SQR(s[1] * s[1] - s[3] * s[3]));
                                                                                                                                                                                     39
\operatorname{temp} := \operatorname{qq} - \operatorname{eps} * \operatorname{sss};
                                                                                                                                                                                     40
c[2] := -temp*(1-sss) + 0.5*((j[1]-j[2])*(s[1]*s[1]-s[2]*s[2]) + 0.5*((j[1]-j[2])*(s[1])*(s[1]-s[2])*(s[2])) + 0.5*((j[1]-j[2])*(s[1])*(s[1]-s[2])*(s[2])) + 0.5*((j[1]-j[2])*(s[1])*(s[1]-s[2])*(s[2])) + 0.5*((j[1]-j[2])*(s[1])*(s[1]-s[2])*(s[2])) + 0.5*((j[1]-j[2])*(s[1])*(s[1]-s[2])*(s[2])) + 0.5*((j[1]-j[2])*(s[1]-s[2])*(s[1]-s[2])) + 0.5*((j[1]-j[2])*(s[1]-s[2])) + 0.5*((j[1]-s[2])*(s[1]-s[2])) + 0.5*((j[1]-s[2])*(s[1]-s[2])) + 0.5*((j[1]-s[2])*(s[2])) + 0.5*((j[1]-s[2])) + 0.
                                                                                                                                                                                     ^{41}
                  (j[2] - j[3]) * (s[2] * s[2] - s[3] * s[3]) +
                                                                                                                                                                                     42
                  (j[1] - j[3]) * (s[1] * s[1] - s[3] * s[3]));
                                                                                                                                                                                     43
c[3] := temp + temp - 0.5 * (SQR(j[1] - j[2]) + SQR(j[2] - j[3]) +
                                                                                                                                                                                     44
                         SQR(j[1] - j[3]));
                                                                                                                                                                                     45
 energy := (-1/c[1]) * (c[2]+SQRT(c[2]*c[2] - c[1]*c[3])) / 27.2;
                                                                                                                                                                                     46
END;
                                                                                                                                                                                     47
```

B SEP de Porter et Karplus : version Scilab

```
function fn = energ(r1, r2)
// énergie potentielle du système H+H+H, en eV
//référence pour l'énergie: H + H2 éloignés
//version Scilab
d1 = 4.7466; d3 = 1.9668;
re = 1.40083;
alfa = 1.04435; bet = 1.000122;
delta = 28.2; eps = -17.5;
kapa = 0.6; lamda = 0.65;
r = zeros(3, 1);
c = zeros(r); q = zeros(r); j = zeros(r); s = zeros(r);
zeta = zeros(r); e1 = zeros(r); e3 = zeros(r);
r(1) = r1; r(2) = r2; r(3) = r1 + r2;
for k = 1:3 do
   zeta(k) = 1 + kapa * exp(-lamda * r(k));
   temp = r(k) * zeta(k);
   s(k) = (1 + temp^2/3) * exp(-temp);
   temp = exp(-alfa*(r(k)-re));
   e1(k) = d1 * (temp^2 - 2 * temp);
   temp = exp(-bet*(r(k)-re));
   e3(k) = d3*(temp^2 + 2*temp);
   q(k) = 0.5 * (e1(k) + e3(k) + s(k)^{2} * (e1(k) - e3(k)));
   j(k) = 0.5*(e1(k) - e3(k) + s(k)^2*(e1(k)+e3(k)));
end
j(1) = j(1) + s(1)^2 * delta * ((1+1/r(2)) * exp(-2*r(2)) + ...)
        (1+1/r(3)) * exp(-2*r(3)));
j(2) = j(2) + s(2)^2 * delta * ((1+1/r(1)) * exp(-2*r(1)) + ...)
        (1+1/r(3))*exp(-2*r(3)));
j(3) = j(3) + s(3)^2 + delta * ((1+1/r(2)) * exp(-2*r(2)) + ...)
        (1+1/r(1))*\exp(-2*r(1)));
sss = s(1) * s(2) * s(3);
qq = q(1) + q(2) + q(3);
c(1) = (1-sss)^2 - 0.5*((s(1)^2-s(2)^2)^2 + \dots
                          (s(2)^2 - s(3)^2)^2 + \dots
             (s(1)^2 - s(3)^2)^2);
temp = qq - eps * sss;
c(2) = - temp*(1-sss) + 0.5*((j(1)-j(2))*(s(1)^2-s(2)^2) + ...)
       (j(2)-j(3))*(s(2)^{2}-s(3)^{2}) + \dots
       (j(1)-j(3))*(s(1)^{2}-s(3)^{2}));
c(3) = temp^2 - 0.5*((j(1)-j(2))^2 + (j(2)-j(3))^2 + ...
          (j(1)-j(3))^2);
fn = (-1/c(1)) * (c(2) + sqrt(c(2) * c(2) - c(1) * c(3)));
fn = fn + 4.7465681;
//pour plot3d
//if fn > 1.5
// fn = 1.5
//end
endfunction
```

1

 $\mathbf{2}$

3

 $\frac{4}{5}$

6

7

8

9

10 11

12

13

 $14 \\ 15$

16

17

18

19

20

21

 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Références

- D.G. TRUHLAR et R.G. WYATT : History of H₃ kinetics. Ann. Rev. Phys. Chem., 27:1–43, 1976.
- [2] D.G. TRUHLAR et R.E. WYATT : Potential energy surfaces and elastic and inelastic scattering. Adv. Chem. Phys., 36:141–204, 1977.
- [3] W.H. MILLER : Recent advances in quantum mechanical reactive scattering theory, including comparison of recent experiments with rigorous calculations of state to state cross sections for the $H/D + H_2 \longrightarrow H_2/HD + H$ reactions. Ann. Rev. Phys. Chem., 41:245–281, 1990.
- [4] F.J. AOIZ, V.J. HERRERO et V. Saez RABANOS : Effects of translational, rotational, and vibrational energy on the dynamics of the D + H₂ exchange reaction. A classical trajectory study. J. Chem. Phys., 94:7991–8007, 1991.
- [5] M.J. D'MELLO, D.E. MANOLOPOULOS et R.E. WYATT : Theory, experiment, and the $H + D_2$ reaction. *Science*, 263:102, 1994.
- [6] R.N. PORTER et M. KARPLUS : Potential energy surface for H₃. J. Chem. Phys., 40:1105–1115, 1965.
- [7] M. KARPLUS, R.N. PORTER et R.D. SHARMA : Exchange reactions with activation energy. I. simple barrier potential for (H, H₂). J. Chem. Phys., 43:3259–3287, 1965.
- [8] W. KOLOS et C.C.J. ROOTHAAN : Accurate electronic wave functions for the H₂ molecule. *Rev. Mod. Phys.*, 32:219–232, 1960.
- [9] J.C. SLATER : Quantum theory of molecules and solids, volume 1. McGrawHill, New York, 1963.
- [10] J.-P. GRIVET : Méthodes numériques appliquées pour le scientifique et l'ingénieur, chapitre 11. EDP Sciences, Les Ulis, 2ième édition, 2013.
- J.-P. GRIVET : Colinear H + H-H reaction. Computer simulation of quasiclassical trajectories. Am. J. Phys., 62:1014–1020, 1994.
- [12] G. HERZBERG : Molecular spectra and molecular structure : spectra of diatomic molecules. Krieger, 1989.
- [13] P. SIEGBAHN et B. LIU : An accurate three-dimensional energy surface for H3. J. Chem. Phys., 68:2457–2465, 1978.
- [14] D.G. TRUHLAR et C.J. HOROWITZ : Functional representation of Liu and Siegbahn's accurate ab initio potential energy calculations for $H + H_2$. J. Chem. Phys., 68:2466–2476, 1978.
- [15] D.G. TRUHLAR et C.J. HOROWITZ : erratum. J. Chem. Phys., 71:1514, 1979.
- [16] H.D. KUTZ, J.H. COPELAND et G.T. MATHAI : Molecular dynamics of the F+H₂ chemical reaction. J. Chem. Educ. Software 4C2, 1992.
- [17] S.C. ALTHORPE et D.C. CLARY : Quantum scattering calculations on chemical reactions. Ann. Rev. Phys. Chem., 54:493–529, 2003.
- [18] X. YANG : State to state dynamics of elementary bimolecular reactions. Ann. Rev. Phys. Chem., 58:433–459, 2007.