Exercice 4-6 : Différences finies d'un polynôme de degré n

a) Le calcul des différences latérales fait intervenir des opérations linéaires; on peut donc considérer séparément le terme de plus haut degré, soit $p_n = a_n x^n$. La première différence latérale est

$$a_n(x+h)^n - a_n x^n = a_n(C_n^1 x^{n-1} h + C_n^2 x^{n-2} h^2 + \cdots).$$

C'est un polynôme de degré n-1. Le coefficient du terme de plus haut degré est $a_{n-1}^{(1)} = a_n C_n^1 h = n a_n h$. Nous faisons l'hypothèse que la différence d'ordre k est un polynôme de degré n-k dont le coefficient du terme de plus haut degré s'écrit

$$a_n n(n-1)(n-2)\cdots(n-k+1)h^k \equiv a_{n-k}^{(k)}$$
.

Pour calculer la différence d'ordre k+1, nous considérons à nouveau le terme de degré le plus élevé :

$$a_{n-k}^{(k)}[(x+h)^{n-k}-x^{n-k}]=a_{n-k}^{(k)}[(n-k)hx^{n-k-1}+\cdot\cdot\cdot].$$

C'est encore un polynôme en x dont le terme de degré le plus élevé s'écrit

$$a_{n-k}^{(k)}h(n-k)x^{n-k-1} \equiv a_{n-k-1}^{(k+1)}x^{n-k-1}$$

soit

$$a_{n-k-1}^{(k+1)} = a_n n(n-1) \cdots (n-k) h^{k+1}.$$

Les différences d'ordre successif sont donc des polynômes de degré décroissant, jusqu'à la différence d'ordre k = n qui est la constante $n!h^na_n$.

b) Formons la table des différences latérales

x	p(x)	Δ^1	Δ^2	Δ^3	Δ^4
-2	-5				
		6			
-1	1		-6		
		0		6	
0	1		0		0
		0		6	
1	1		6		0
		6		6	
2	7		12		
		18			
3	25				

Les différences d'ordre 3 sont constantes, le polynôme est donc de degré 3. Elles sont égales à 3! = 6, ce qui indique que le terme de plus haut degré est x^3 .

c) Posons

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

Les coefficients inconnus a_i doivent satisfaire les relations

$$\begin{cases}
p(0) = a_0 = 1, \\
p(1) = a_0 + a_1 + a_2 + a_3 = 1, \\
p(-1) = a_0 - a_1 + a_2 - a_3 = 1, \\
p(2) = a_0 + 2a_1 + 4a_2 + 8a_3 = 7.
\end{cases}$$

On trouve facilement $a_0 = 1, a_2 = 0, a_3 = 1, a_1 = -1.$

d) On construit la table des différences divisées. Pour l'ordre 1, elle se confond avec la table des différences latérales parce que l'intervalle tabulaire vaut 1; les diviseurs suivants sont tous entiers.

x	p(x)	ordre 1	ordre 2	ordre 3	
-2	-5				
		6			
-1	1		-6/2		
		0		-3/3	
0	1		0		0
		0		3/3	
1	1		6/2		0
		6		3/3	
2	7		12/2		
		18	,		
3	25				

On a

$$p(x) = p_0 + (x - x_0)p[x_0, x_1] + (x - x_0)(x - x_1)p[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)p[x_0, x_1, x_2, x_3]$$

soit

$$p = -5 + (x+2)6 + (x+2)(x+1)(-3) + (x+2)(x+1)x(1) = x^3 - x + 1.$$