Exercice 5-7 : Schéma de Horner et algorithme de Newton

a) Appliquons l'algorithme de Horner pour les trois valeurs proposées ; nous obtenons les tableaux de valeurs suivants :

	1	1	-3	-2
Ì		$2 \times 1 + 1$	$2 \times 3 - 3$	$2 \times 3 - 2$
Ì	1	3	3	4

ſ	1	1	-3	-2
Ī		$1,5 \times 1 + 1$	$1,5 \times 2,5 - 3$	$1,5 \times 0,75 - 2$
Ī	1	2,5	0,75	-0,875

1	1	-3	-2
	$-0.5 \times 1 + 1$	$-0.5 \times 0.5 - 3$	$-0.5 \times -3.25 - 2$
1	0,5	$-3,\!25$	$-0,\!375$

La valeur numérique du polynôme apparaît en gras.

- b) Nous savons déja que p(1,5)=-0.875; nous calculons ensuite p'(1,5)=6.75. Une première itération de la méthode de Newton donne $x^{(1)}=x^{(0)}-p'(x^{(0)})/p(x^{(0)})$ soit $x^{(1)}=1.5+0.875/6.75=1.6296296$. Pour aller plus loin, il vaut mieux programmer le schéma de Horner (voir le livre § 5.7.4) et la méthode de Newton. Nous trouvons ensuite $p(x^{(1)})=0.0945994,\ p'(x^{(1)})=8.2263374$ et $x^{(2)}=1.6181301$ puis $x^{(3)}=1.618034$.
- c) La division de p(x) par x+2 fournit comme quotient le trinôme x^2-x-1 dont les racines sont $(1 \pm \sqrt{5})/2$ soit, respectivement 1,618034 et -0.6180340.