J.-P. Grivet

Exercice 6-6: Méthodes itératives

- a) Les deux systèmes admettent la solution exacte $\hat{\boldsymbol{x}} = [1, 1]^T$.
- b) La méthode de Jacobi appliquée au système (A) fournit les résultats

itération	x_1	x_2
0	0	0
1	1.100000	1.200
2	0.980000	0.9800
3	1.002000	1.00400
4	0.999600	0.99960
5	1.000040	1.000080

alors que, pour (B), nous trouvons

itération	x_1	x_2
0	0	0
1	11.00	6.00
2	-49.00	-49.00
3	501.00	251.00

La matrice des coefficients du système (B) n'est manifestement pas à diagonale dominante, ce qui explique la divergence rapide de la méthode.

c) La méthode de Gauss-Seidel a produit, pour le système (A), les résultats suivants :

itération	x_1	x_2
0	0	0
1	1,100	0,980
2	1,0020	0,9996
3	1,000040	0,999992
4	1,000001	1,000000
5	1,000000	1,000000

Vous voyez que cet algorithme converge plus rapidement que la méthode de Jacobi. Dans le cas (B), nous avons trouvé

itération	x_1	x_2
0	0	0
1	11,00	-49,00
2	501,00	-2499,00
3	25001,00	-124999,00

La méthode diverge, comme la précédente.