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2.4 – EPR spectrum for a centre which interacts with several nuclei 
in the isotropic regime

2.4.1 – Hyperfine interactions with several equivalent nuclei

Nuclei are said to be equivalent from the point of view of hyperfine interac-
tions when they have the same spin and they are characterised by the same 
hyperfine constant Aiso.

For example, this is the case with an organic radical for which the unpaired 
electron interacts in the same way with three protons from a CH3 group, or for 
a transition ion complex such as Cu(NH3)4

2+ where the unpaired electron from 
the Cu2+ ion interacts in the same way with the four 14N nuclei from the ligands.

We will first examine the case of a centre of spin S , its unpaired electrons interact 
with two equivalent nuclei of angular momentum I1 and I2, with I1 = I2 = I. 
Equation [2.6] then becomes:
 H = giso β B SZ + Aiso SZ I1Z + Aiso SZ I2Z

If we denote M1 and M2 the respective values of I1Z and I2Z, the possible energy 
values are given by:
 E (MS, M1, M2) = giso β B MS + Aiso MS (M1 + M2)

The selection rule becomes:
 ΔMS = ! 1;  ΔM1 = 0;  ΔM2 = 0

The transitions allowed from level E(MS, M1, M2) to levels E(MS + 1, M1, M2) 
and E(MS - 1, M1, M2) have the same energy:
 ΔE(M1, M2) = giso βB + Aiso (M1 + M2) [2.9]

For each value of ΔE(M1, M2) there is a corresponding resonance line for 
which the position can be determined from ΔE(M1, M2) = hν. Since M1 and 
M2 can take any of the (2I + 1) values (-I, - I + 1, … , I ), there exist (2I + 1)2 
pairs (M1, M2). Among these pairs, some produce the same (M1 + M2) value, 
and their lines are added. To see how this looks, it is convenient to represent 
equation [2.9] on a diagram (figure 2.8). Starting from giso βB, we first add the 
term Aiso M1 considering all possible values of M1, then we add Aiso M2 taking 
all values of M2 into consideration.
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Figure 2.8 – Construction of the quantity ΔE(M1,M2) defined 
by equation [2.9] for (a) I1 = I2 = ½ and (b) I1 = I2 = 1.

 2 For I1 = I2 = ½, the 4 pairs (M1, M2) give the following ΔE and resonance 
fields (figure 2.8a):

 (½, ½): ΔE1 = giso βB + Aiso ; B1 = B0 - Aiso /giso β
 (½, - ½), (- ½, ½): ΔE2 = giso βB ; B2 = B0

 (- ½, - ½): ΔE3 = giso βB - Aiso ; B3 = B0 + Aiso /giso β

As ΔE2 is obtained twice, the intensity of the central line will be doubled 
(figure 2.9). The positions of the 3 lines are the same as in the case of a 
single nucleus of spin I = 1 (figure 2.5), but their relative intensities take 
the proportions (1 : 2 : 1).

Figure 2.9 – EPR 
spectrum corresponding  
to figure 2.8a. 
(a) Absorption signal 
and (b) its derivative.

/
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Figure 2.10 shows the EPR spectrum for a liquid solution of the 2,6-di-tert- 
butyl-4-(4-oxo-4H-chromen-2-yl) phenyloxyl radical, for which the hyper-
fine structure is produced by interaction with the two meta protons in the 
phenoxyl group.

Figure 2.10 – EPR spectrum for the 2,6-di-tert-butyl-4-(4-oxo-4H-chromen-2-yl) 
phenyloxyl radical which has 2 equivalent protons. 

Temperature 20 °C. Microwaves: frequency 9.697 GHz, power 4 mW. 
Modulation: frequency 100 kHz, peak-to-peak amplitude 0.03 mT.

 2 For I1 = I2 = 1, we obtain (figure 2.8b):
 ΔE1 = giso βB + 2Aiso ; B1 = B0 - 2Aiso /giso β
 ΔE2 =  giso βB + Aiso ; B2 = B0 - Aiso /giso β
 ΔE3 = giso βB ; B3 = B0

 ΔE4 = giso βB - Aiso ; B4 = B0 + Aiso /giso β
 ΔE5 = giso βB - 2Aiso ; B5 = B0 + 2Aiso /giso β

The positions of the 5 lines are the same as in the case of a single nucleus 
of spin I = 2, but their relative intensities vary in the proportions (1:2:3:2:1) 
(figure 2.11).
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4.3 – Shape of the spectrum produced by an ensemble of para-
magnetic centres in the absence of hyperfine interaction

In this section we consider a sample containing identical molecules characterised 
by their spin S and their gu  matrix, without hyperfine interaction, and we wish 
to determine the shape of the EPR spectrum for different modes of organisation 
of the molecules in the sample.

4.3.1 – Variation in gʹ values with the direction of B
We saw in section 3.3.2 that the interaction between the magnetic moment 
given by equation [4.1] and a magnetic field B produces a pattern of (2S + 1) 
equidistant energy levels, with splitting:

 ΔE = gʹβB

where:
 gʹ = [gx

2 ux
2 + gy

2 uy
2 + gz

2 uz
2]½ [4.3]

The numbers (gx, gy, gz) are the principal values of the gu  matrix and (ux, uy, uz) 
are the components of the unit vector u in the direction of B, in the system of 
magnetic axes {x, y, z} of the molecule. The “prime” suffix of gʹ indicates that 
this number depends on the direction of B relative to the molecule. Resonance 
occurs when ΔE = hν, where ν is the frequency of the spectrometer. The reso-
nance field is therefore given by:

 B = hν/gʹβ [4.4]

The sample is fixed in the cavity of the spectrometer, but the orientation of the 
molecules relative to B can vary in the sample. Since the EPR spectrum results 
from superposition of the resonance lines produced by all the molecules, the 
following questions arise: 

 2 If the sample is such that all the molecules are oriented in the same way, 
how does the spectrum vary when the sample is rotated in the field? 

 2 If the molecules in the sample are oriented differently relative to the mag-
netic field, what is the shape of the spectrum? 

To answer these questions, we must examine how the resonance field B (equa-
tion [4.4]), and consequently the gʹ value (equation [4.3]), vary as a function 
of the direction of B.
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 2 We will start with a centre with cubic symmetry for which gx = gy = gz = g. 
Equation [4.3] shows that gʹ = g whatever the direction of B. The reso-
nance lines of all the molecules add together to produce a single line at 
B = hν/gβ. The spectrum is therefore reduced to this unique line and it is 
independent of how the molecules are organised in the sample, and of the 
orientation of the sample relative to B.

 2 We then consider a centre with axial symmetry. If z is the axis of symmetry, 
the two principal values gx and gy are equal, and are generally written: 

 gx = gy = g9 ,  gz = g//

Equation [4.3] can then be written: 
 gʹ = [g92 (ux

2 + uy
2) + g// 

2 uz
2]½

If θ is the angle between the axis z and the vector u (figure 4.3a), we have 
uz

2 = cos2θ and ux
2 + uy

2 = sin2θ, and gʹ can be written:

 gʹ = [g92 sin2θ + g// 
2 cos2θ]½ [4.5]

9

Figure 4.3 – Centre with axial symmetry: (a) definition of  
the angle θ, (b) variation of gʹ as a function of θ for g9 > g//.

In this case, gʹ only depends on the angle θ between the molecular axis z and 
the field B. The number gʹ varies monotonically from g// for θ = 0 (u parallel 
to z) to g9 for θ = 90° (u perpendicular to z), which explains the notations 
g// and g9 (figure 4.3b).

 2 In the general case where the three numbers (gx, gy, gz) are distinct, gʹ de-
pends on two parameters, and its variations as a function of the direction 
of B are more difficult to visualise. An idea can be obtained by seeking the 
directions of u which satisfy equation [4.3] for a given value of gʹ. This 
problem is dealt with in complement 2 with the help of a simple geometric 
representation. The principal axes can always be labelled such that: 

 gx ≤ gy ≤ gz
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/

Figure 4.13 – Interpretation of the shape of the X-band spectrum for a frozen  
solution of a nitroxide radical characterised by gx = 2.0089, gy = 2.0064,  

gz = 2.0027, Ax = Ay = 14 MHz, Az = 98 MHz. (a) Shape of the three components  
from figure 4.12a. For each value of MI, “stick diagrams” identify the position  

of the lines for the canonical directions of the field. (b) Sum of the three components. 
(c) The spectrum. The lines are assumed to be Lorentzian.

4.5 – How molecular movements affect the spectrum: 
isotropic and very slow motion regimes

Up to now, we have assumed that the paramagnetic molecules were frozen in 
the sample placed in the field B. However, in a crystal, a frozen solution and 
even more so in a liquid solution, the molecules are in motion. This motion 
causes their orientation relative to the field to vary, which can alter the shape of 
the spectrum. Indeed, we have already indicated that the effects of anisotropy 
disappear from the EPR spectrum in the isotropic regime when these movements 
allow the molecules to rapidly explore all the possible orientations relative to 
the field with an equal probability (section 2.2.3).

4.5.1 – A hypothetical experiment

Consider a paramagnetic molecule of spin S characterised by its gu  matrix. This 
molecule is placed in a magnetic field B of variable magnitude, but with a fixed 
direction perpendicular to the principal axis z. Its Hamiltonian can be written: 
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5.2.4 – Intensity of the resonance lines and of the spectrum in the  
presence of hyperfine interactions

When a hyperfine interaction with a nucleus of spin I exists, each of the energy 
levels Ea and Eb in figure 5.2 splits to give (2I + 1) equidistant levels separated 
by Aʹ/2, the value of which depends on the orientation of the molecule rela-
tive to B (equation [4.11]). Each value of MI has a corresponding transition of 
energy (figure 5.5)

 ΔE(MI )  =  gʹβB + AʹMI

which gives a line centred at B0ʹ(MI ) = B0ʹ - (Aʹ/gʹβ)MI, where B0ʹ = hν/gʹβ 
(equation [4.12]). To determine the intensity of this line, we will return to the 
calculation performed in section 5.2.1. Based on the note following equa-
tion [5.11], expression [5.12] can be used to determine the transition probability, 
on the condition that we replace hν by (hν - AʹMI ), i.e., replace B0ʹ by the field 
B0ʹ(MI ). In addition, we saw in section 3.5.2 that the matrix element involved 
in the transition probability is not modified in the presence of hyperfine inter-
action. The intensity of the line (MI ) is therefore given by an expression similar 
to equation [5.16]:

 ( , , ) ( , ) ( ) tanhI M g B n M k T
h

2 2I P I1 B'q j
pb

q j n= c m [5.20]

where n(MI ) = na(MI ) + nb(MI ) is the sum of the populations of energy levels 
between which transitions take place (figure 5.5). When the intensities of the 
(2I + 1) lines for the hyperfine structure are added, the sum ( )n MIM I

I
I =−

/  
emerges, which is equal to n = na + nb and we find the intensity of the line in 
the absence of interaction.

g ′βB ΔE (MI) = g′βB + A′MI

nb

na

nb(MI)

na(MI) |aH|MIH

|bH|MIH|bH

|aH

A′/2

Figure 5.5 – Definition of the na(MI ) and nb(MI ) populations  
of the energy levels involved in the transition with energy ΔE(MI ).
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Figure 5.11 – Temperature-dependence of 1/T1 for iron-sulfur centres:  
(a) [2Fe – 2S]+ centre for a protein from the cyanobacterium Spirulina maxima. 

(b) [4Fe – 4S]+ centre for a protein from the bacterium Bacillus stearothermophilus. 
The T 6.3 temperature-dependence is that predicted by a “fractal” model 

[Stapleton et al., 1980]. 
[Reproduced with permission from: Bertrand P. et al., Journal of Chemical Physics, 76, 4715–4719 

© 1969, American Institute of Physics]

5.4.3 – Relaxation phenomena and EPR spectroscopy in practice

In any spectroscopic technique, the molecules are brought to thermal equilib-
rium by “thermalisation” processes. In optical or vibrational spectroscopies, we 
are interested in transitions between states which are strongly coupled to the 
lattice due to molecular collisions (in liquid solution) or deformations (in solid 
medium). Thermalisation processes are very efficient, and thermal equilibrium 
is continuously maintained. In addition, these processes contribute little to the 
linewidth which is determined by other causes. Apart from in exceptional cases, 
thermalisation processes therefore do not alter the spectrum.

The situation is very different in EPR, and more generally in magnetic spec-
troscopies, where paramagnetic centres are brought to thermal equilibrium by 
the very specific processes of spin-lattice relaxation.
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//

//

Figure 6.9 – Density (dashed line) and shape (continuous line) of the spectrum given by 
a centre of spin S = 1 with rhombic symmetry in the high-field situation. The spectrum is 

calculated for: ν = 10 GHz, g = 2.00, |D| = 0.033 cm-1 (1000 MHz), |E/D| = 0.1.

6.6 – EPR spectrum for complexes of half-integer spin  
in the low-field situation. Kramers doublet

The low-field situation is achieved at X-band when |D| exceeds a few cm-1. 
It is therefore not observed with organic molecules in a triplet state, but it is 
frequent with transition ion complexes. For complexes with half-integer spin, 
we will see that calculation of the spectrum comes down to that for a centre of 
spin ½. It is therefore possible to use the results obtained in chapters 4 and 5. 
We will deal with the case of complexes with axial symmetry and generalise 
the results for any symmetry.

6.6.1 – Case of a complex with axial symmetry

Consider a complex characterised by the Hamiltonian [6.9], in which the prin-
cipal term is the zero-field splitting term and the Zeeman term is a perturbation. 
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Figure 7.14 – (a) X-band (ν = 9.40 GHz) and (b) Q-band (ν = 34 GHz) spectra  
for the [(Bpmp)Mn2(μ-OAc)2](ClO4) complex recorded at different temperatures.  

Power: X-band 0.5 or 2 mW, Q-band: 0.58 or 2.3 mW. Modulation: frequency 100 kHz, 
peak-to-peak amplitude 0.5 mT. Numerical simulations are represented by the dashed lines. 

[Reproduced with permission from Blanchard S. et al., Inorganic Chemistry, 42, 4568–4578 
© 2003, American Chemical Society]

7.5 – How intercentre interactions affect the intensity of 
the spectrum and the relaxation properties

7.5.1 – EPR spectrum intensity

The intensity of the spectrum produced by two interacting paramagnetic centres 
is simply expressed in the two limit situations studied in sections 7.3 and 7.4.

 L Situation with weak intercentre interactions

Within this limit, the intensity of the spectrum for each centre is unmodified. 
If the sample contains N (A, B) pairs, the total intensity is equal to the sum of 
the intensities of the spectra produced by N centres A and N centres B (equa-
tions [5.17] and [5.19]). When the experimental spectrum is integrated, a large 
enough field range must be chosen to include any lateral lines due to exchange 
interaction (section 7.3.2).
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