Exercices supplémentaires du chapitre 3 : Du local au global

- 1. Encore d'autres raisons pour lesquelles $\mathrm{Diff}(S^1)$ n'est pas un groupe de Lie Si on identifie S^1 au cercle unité paramétré par $t\mapsto e^{2i\pi t}$, $\mathrm{Diff}(S^1)$ s'identifie aux applications lisses strictement monotones de $\mathbf R$ dans $\mathbf R$ telles que $f(t+2\pi)=f(t)$ pour tout f. On note aussi S^1 le groupe des rotations, R_α la rotation d'angle α . a) Montrer que le sous-groupe des difféomorphismes qui commutent avec $R_{\frac{2\pi}{n}}$ s'identifie aux $f\in\mathrm{Diff}(S^1)$ tels que $f(t+\frac{2\pi}{n})=f(t)$ pour tout t. En déduire que $R_{\frac{2\pi}{n}}$ appartient à une infinité de groupes à un paramètre.
- b) Soit X un champ de vecteurs partout non nul sur S^1 . Montrer que le flot de X est conjugué au sous-groupe des rotations.
- c) Soit f défini par $f(t) = t + \frac{2\pi}{n} + \epsilon \sin nt$. Montrer que pour ϵ petit f définit un difféomorphisme sans points fixes, que f^n a un point fixe sans être égal à l'identité. En déduire qu'il n'existe pas de champ de vecteurs X tel que $f = \varphi_1^X$.