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Figure 1.2 – In the top figure, a ball at point (1) has no chance of finding
itself at point (2) due to any natural fluctuation. We call this position
linearly stable. To change from point (1) to (2) a strong outside pertur-
bation is necessary. Thus, position (1) is linearly stable but nonlinearly
unstable. In the bottom figure, the ball is in an unstable position. In this
case a small perturbation is enough to cause the transition from (1) to
(2), and position (1) is linearly unstable.

The general and universal features of nonlinear phenomena can be repre-
sented in two different languages: catastrophe and bifurcation theory. Catas-
trophe theory deals with the determination of the geometric figure tracing
out the boundaries of qualitatively differing solutions in parameter space
(figure 1.1). Bifurcation theory deals instead with the specification of the
evolution of one dynamic variable of the system (such as the equilibrium
position of a mass in a mechanics problem) as a function of the control par-
ameters (see figure 1.3, a bifurcation diagram).

Q

control parameter

Figure 1.3 – A bifurcation diagram, representing a quantity Q character-
istic of the nonlinear system studied as a function of a control parameter.
The broken line represents an unstable branch, and the continuous line
the stable branch.

Though two different representations, catastrophe and bifurcation describe
the same reality; and especially, both search for universal behaviors indepen-
dent of any specific model studied (whether it be a chemical, biological, or
economic system, etc.). The goal of catastrophe theory is to determine the
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Bifurcations are often accompanied by a loss of symmetry. A bed of sand
is flat before it becomes sculpted by ripples, so the topography from any
two points is indistinguishable. As ripples form, the topography between crest
and trough becomes starkly distinguished. Now one must travel a distance
equal to the repetition length of the motif (the wavelength of the ripples) to
find the same landscape (such as a crest). This is an example of translation
symmetry breaking; after the formation of the folds, the symmetry has be-
come discrete, and so one must travel an integer number of wavelengths to
find the same topography.

In the neighborhood of a bifurcation point (i.e. when the value of the control
parameter is close enough to the critical value needed to give rise to order),
all systems are described by a universal equation called the amplitude equa-
tion. Once a system is far from thermal equilibrium (for example, if we add
more and more energy), the ordered state can, in turn, become unstable and
undergo a secondary bifurcation. Each new bifurcation leads to a new loss of
symmetry. In general, the final state of each system is temporal and spatial
disorder, namely spatio-temporal chaos or turbulence: the system then loses
all temporal and spatial correlations.

A physicist may be tempted to draw parallels between primary bifurcations
(the emergence of order) and the theory of phase transitions (for example,
that of the liquid-solid transition occurring at a low enough temperature).
We will see that this is a valid analogy so long as the system is studied in the
neighborhood of the instability threshold, and if the instability is stationary
(i.e. has no time oscillation). This analogy quickly reaches its limits, and non-
equilibrium processes come to the fore, taking the studied systems to new
depths. The dynamics become complex, and have no resemblance to phase
transitions. Non-equilibrium systems may have a wide variety of dynamic
behaviors – something not allowed for by the thermodynamics of a system
globally in equilibrium (see chapter 12).

Systems in equilibrium8 are governed by principles that are generally well-
established: for example, they are characterized by a minimum value of en-
ergy, or a maximum of entropy, according to the exact configuration consid-
ered (e.g. in thermodynamics, processes having to do with a constant tem-
perature or a constant pressure are evoked). These principles lead to what
we call variational models9. Systems that are not in equilibrium are non-
variational, by virtue of the fact that their state, or their dynamics, cannot

8. In physics, we may speak of thermodynamic equilibrium, but the notion of non-
equilibrium is more general, as we have mentioned before.

9. This name references the fact that the state that is selected is either a minimum or a
maximum of a certain quantity, such as energy. The extremum is obtained by taking
the zero of the derivative of a certain quantity, such as energy (or of a functional, that
is, a function of a function).
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Figure 2.3 – A schematic view of different configurations. From left
to right: rest length; stretched spring in vertical position (the spring
resists moving away due to increased stretching); and compressed spring
in vertical position (a deviation from that position is favorable since it
reduces stretching).

2.1.3. Analysis of the Bifurcation

So, the x = 0 solution of the system studied in this chapter (see figure 2.1)
becomes unstable as soon as the imposed length of the spring at the vertical
position �c is smaller than its rest length (�c < �0). Let us now determine the
new equilibrium position when in the vicinity of the instability threshold2

i.e. �c � �0. Once the threshold �c = �0 is reached, the mass displaces from
its vertical position x = 0 and the nonlinear effects of the higher order terms
(x4) intervene to ensure saturation.

Using the condition dEp/dx = 0 to define the extremas of energy and their
stability relative to the potential energy, we determine the equilibrium solu-
tions: (i) when �c > �0, solution x = 0 is stable; (ii) whereas when �c < �0,
solution x = 0 is unstable (see figure 2.2). From the fourth order Taylor
expansion of the potential energy (equation (2.4)) we find the following solu-
tions (subscript 0 in x0 indicates an equilibrium solution):

x0 = 0 and x0 = ±�0
√
2
(�0 − �c)

�c
. (2.5)

2. Though the system studied in this chapter can be determined entirely with an analytic
calculation, most nonlinear systems cannot. It is thus necessary to take up linear ex-
pansions to analyze the system. Focusing on the vicinity of the instability threshold,
besides justifying the Taylor expansions of functions related to the system, gives the
problem a universal character, independent of the nature of the system and thus of the
specific mechanisms that govern it.
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The first solution, x0 = 0, always exists, whereas the second solution requires
that �c < �0. When x0 = 0 becomes unstable (�c < �0) the new dou-
ble solution x0 = ±�0

√
2(�0 − �c)/�c takes over. We say there is a bifur-

cation of the stationary solution x0 = 0 toward a pair of stationary solutions
x0 = ±�0

√
2(�0 − �c)/�c.

Plotting the value of x0 as a function of the spring length at rest �0, which
in this case is our control parameter, we obtain what is called a bifurcation
diagram (see figure 2.4), which is simply the portrait of the stationary solu-
tions (equation (2.5)). The broken curve on figure 2.4 represents the unstable
solution. This is the usual convention in bifurcation theory. Let us mention
that the bifurcation in question, called pitchfork bifurcation because of the
shape of the curve shown in figure 2.4, is sometimes also called a supercritical
bifurcation (see section 3.3). Furthermore, it belongs to the family of cusp
catastrophes, which we will discuss further in chapter 4.

c

0

x0

stable

stable

stable

unstable

bifurcation point

Figure 2.4 – A pitchfork bifurcation diagram. Continuous lines correspond
to stable branches, and the discontinuous line to unstable branches.

2.1.4. Universality in the Vicinity of a Bifurcation Point

In the study of any nonlinear system, the first major steps are to search for
bifurcation points and to look at polynomial expansions in the vicinity of
these points.

The full potential energy Ep(x) (equation (2.1)) is simple enough that we
could solve it without using a polynomial approximation. It can easily be
checked that the qualitative behavior found with the fourth order approxi-
mation (see figure 2.2) is equivalent to the behavior found by analysis of the
exact expression (equation (2.1)).

The resemblance in the potential energy’s qualitative behavior when using
both the exact and approximate forms is indicative of the fact that the qual-
itative change in solutions only occurs near x = 0; that is, once the length
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While the notion of structural stability is perfectly defined and non-
ambiguous in a mathematical sense, it calls for some clarification when evoked
in an experimental context. For example, the bifurcation diagram of an ex-
perimental model (see figure 3.26(c)) is representative of a real experiment
that is invariably skewed by measurement errors or some weak bias. The the-
oretical models of the pitchfork bifurcation or of the imperfect bifurcation
(see figure 3.26(a,b)) would both be a priori good candidates for the experi-
mental result so long as the criteria for distinguishing between the two is not
at our disposal. Thus, the choice of a model to describe the experimentally
obtained bifurcation appears to be somewhat subjective. This indeterminacy
that comes from the experimental context is something inveterate to the ex-
perimental method; nonetheless it should not eliminate the need for a rigorous
classification of bifurcations. This classification is found in the framework of
catastrophe theory.

(a) (b) (c)

Q Q Q

ϵ ϵ ϵ

Figure 3.26 – (a) Pitchfork bifurcation; (b) imperfect bifurcation; (c) sche-
matic representation of experimental results and their uncertainty.

3.7. What Does Catastrophe Theory
Consist Of?

Although we will undertake this topic in greater detail in the following chap-
ter, we will first introduce and illustrate catastrophe theory with the help of
an already familiar example. In contrast to the study of bifurcations in which
the evolution of solutions are represented in a bifurcation diagram (for ex-
ample, see the imperfect bifurcation in figure 3.16 representing the evolution
of an internal variable of amplitude A as a function of external control par-
ameter ε), catastrophe theory studies the qualitative change in a solution’s
behavior solely within the parameter space of the control parameters. Fur-
thermore, catastrophe theory relies on the notion of structural stability to
determine the generic forms of different types of changes in behavior. We will
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4.6. Hyperbolic Umbilic Catastrophe
As we have already emphasized for systems of a single degree of freedom,
the weakest nonlinear term of the potential V is the cubic term. Making a
simple generalization from the unidimensional case, we can write the two
dimension singularity as A3 + B3. As was the case in the one dimensional
problem, the quadratic terms A2 and B2 can be eliminated through a change
of variables. However, since the term AB cannot be eliminated simultaneously
and since the linear terms A and B must remain in the equation, as in the
unidimensional case, the generic form of the potential is:

V = A3 +B3 + wAB − uA− vB. (4.22)

Since we will need three parameters for the universal unfolding of A3 + B3,
we can say that this catastrophe under consideration is of co-dimension 3.
We have three conditions: VA = VB = 0 and the Hessian Δ = 0. We have five
unknowns: A, B, u, v and w. The two first conditions permit us to eliminate
A and B in favor of (u, v, w), and the third condition provides the relationship
between these three parameters from which we can plot the surface of the
catastrophe which we call hyperbolic umbilic11 (see figure 4.8 for plots in three
dimensions and on the plane (u–v)).
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Figure 4.8 – Hyperbolic umbilic catastrophe. Left: a section corresponding
to w = 2. Right: a representation of the catastrophe in three dimensions.
[ c© LiPhy]

11. The word umbilic signifies a point of a curved surface where all the sections of a
normal plane have the same radius of curvature. This catastrophe is sometimes called
the “wave” catastrophe.
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classification to rely on. Nonetheless, adopting the formal framework of bi-
furcations, we can procure descriptions founded on the existing symmetries
of the problem.

4.11. Solved Problem

4.11.1. Umbilic Hyperbolic Catastrophe

Write the three equations which determine the umbilic hyperbolic catastrophe
in vector space (u, v, w).

Solution. Starting with potential V (A,B) (equation (4.22)), we obtain the
fixed point equations ∂V/∂A = ∂V/∂B = 0. We take the determinant of the
Hessian matrix to zero, expressing the annulment of the potential’s concavity,
resulting with Δ = VAAVBB − (VAB)

2 = 0 (see equation (4.21)). These
conditions give us the following three relations:

3A2 + wB − u = 0,

3B2 + wA − v = 0,

36AB − w2 = 0. (4.25)

Suppose that parameter w is not zero (w �= 0). The above equations give us
the parametric equations for the two parameters u and v:

u = 3A2 +
w3

36A
,

v =
3w4

362A2
+ wA. (4.26)

We fix the value of parameter w, and vary the values for A (for example,
between −2 and 2). We can calculate an ensemble of pairs (u, v) for each
value of A which would allow us to trace a curve in the plane (u–v) (see
figure 4.8). This curve is the projection onto the plane (u–v) of the um-
bilic catastrophe. If w is in fact zero (w = 0), the third condition of an-
nulment for the potential’s concavity (equations (4.25)) implies that either
variable A or B is annulled: (i) if A = 0, the first condition of the same
system (equations (4.25)) implies u = 0, while the second implies v > 0;
(ii) if B = 0, we find v = 0 and u > 0.

To conclude, if w = 0, the curve of the catastrophe is the ensemble of axes
u and v. Finally, note that for small enough A, v is positive regardless of
the sign of A, because the first term in 1/A2 of the parametric equation for
v (equation (4.26)) is dominant over the second term in A, while u changes
sign with A. This results in a discontinuous curve in the plane of (u–v);
the curve is composed of two disjoint sections.
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8.10. Critical Dimension
for Attaining Chaos

Chaos is characterized by an extreme sensitivity to initial conditions. This
sensitivity is illustrated by the exponential divergence of two trajectories orig-
inating from very similar initial conditions6; the system very quickly forgets
the initial proximity of the two trajectories.

Dissipation of energy in a system confines the trajectory associated with the
chaotic movement to a finite region of phase space. The trajectory is limited
to the area of an attractor, called a strange attractor (see section 8.7). This
condition seems a priori contradictory to the first property which is char-
acteristic of chaos, in which two trajectories issued from neighboring initial
conditions will diverge in time.

Now we will take a closer look. In two dimensions (a plane) it is impossible for
two trajectories to grow exponentially apart: on one hand, as seen above, due
to dissipation trajectories covering a limited region of the plane (attractor);
on the other hand, because of determinism two trajectories originating from
different initial conditions never cross. We present a proof by contradiction.
If, in a phase plane, there exists a trajectory which at one point intersects
with itself, and if we take as an initial condition this same point of intersec-
tion (see figure 8.14), it is impossible to determine a priori from this point
which was the previous evolution of the trajectory (left or right branch). The
future indeterminacy linked with the indeterminacy of the trajectory is thus
in contradiction with the principle of determinism. In a chaotic regime, two
initially close trajectories will diverge exponentially with time. However, due
to the dense character of trajectories in a chaotic regime, a trajectory that has
to deviate from that which was initially close is surrounded by many other
trajectories that will repel it due to the non-crossing condition. Furthermore,
a trajectory that is at the periphery of all other trajectories, cannot move
far apart due to dissipation. Thus in a dynamical system with two degrees of
freedom, chaos cannot take place.

6. We must specify that the trajectories may approach each other for certain periods of
time before diverging again.
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branch 2

branch 1
(X0,Y0)

Figure 8.14 – An initial condition such as (X0, Y0) could belong
to either branch of the trajectory. This is in contradiction with
deterministic dynamics.

On the other hand, two trajectories in a 3-D phase space have the necessary
room to avoid crossing each other; they can thus diverge infinitely far. The
critical dimension of the phase space is in fact three – the minimum number of
degrees of freedom a system needs to develop chaotic dynamics. For example,
the Rössler system (see equation (8.5)) can become chaotic, while a van
der Pol oscillator (see equation (5.4)) cannot; the second degree temporal
evolution equation describing the van der Pol system is equivalent to two first
order equations, which provides two degrees of freedom to the system and
thus it is impossible for the system to go into a chaotic regime. For the van der
Pol oscillator, even the scenario of a subharmonic bifurcation is impossible: all
regimes which correspond to a period doubling are prohibited. The trajectory
in phase space associated with this regime would need to go around twice
before closing in on itself, which would be impossible without it crossing its
own path, which is prohibited by the logic of determinism.

A simple pendulum (governed by a second order equation) with two degrees
of freedom is subject to the same constraints as the van der Pol system.
However, if one of the oscillators is driven by an external time-dependent
excitation, the system gains an extra degree of freedom in the form of a
temporal variable, so the pendulum may enter a chaotic regime.

To illustrate, consider the case of a sinusoidal excitation, where the pendu-
lum equation takes the form θ̈ + θ̇ + sin θ = A cos(ωt), where A and ω are
respectively the amplitude and the frequency of the external force. Even if the
temporal variable is not a degree of freedom in the usual sense of the term,
it takes care of an important condition: to determine the unique trajectory
of the system. For this we need to know the details of one more variable. In
this case, besides θ and θ̇ of a given moment, we must also know the value
and sign of the force A cos(ωt) at that moment.
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9.7. Beyond the Linear Turing
Instability

Throughout the chapter, we have seen that under certain general conditions,
a homogeneous solution (i.e. a homogeneous mix of two chemical species)
can become unstable and evolve spontaneously into a structured state (or
spatially ordered) defined by a characteristic wavelength. We can study the
stability of the solution using a linear analysis to start with, but need to make
a nonlinear evaluation to see the whole picture. The linear study tells us that
the perturbation is, at first, infinitesimal13, and then grows exponentially
with time. This means that the perturbation finishes by acquiring a large
amplitude over the course of time, large enough that the linear hypothesis
becomes invalid. Hence, nonlinear terms must be taken into consideration.

Then, there are two complementary nonlinear studies we can make. The
first type of study (already covered in chapter 6), looks at the weakly non-
linear regime. This means making a limited expansion of equations in the
neighborhood of the instability threshold. The second type of study is a di-
rect numerical integration of the complete system of equations. This could be
done with the Schnackenberg (equation (9.28)) or the Lengyel–Epstein model
(equation (9.30)), among others. Numerical investigation is a general rule in
the study of nonlinear systems. However, having analytic information, which
is generally valid close to the instability threshold, provides an interesting
basis and guide for the full nonlinear evolution. The analytic study will be
seen in the next chapter.

9.8. The Diverse Turing Patterns
as Found in Nature

A fascinating aspect of the Turing model is its potential for engendering many
similar forms to those observed in nature, from relatively simple structures
such as honeycombs or stripes (see figure 9.4), to the more complex and
fascinating structures such as: (i) shell patterns (see the shells in [11]; these
patterns are found by combining Turing-type equations with other chemical
equations); (ii) the patterns of tropical fish (see [4]); (iii) the patterns in
the fur of many animals, such as the leopard or the jaguar (see figure 9.5).
These different structures emerge from a modified Turing model, and in some

13. The hypothesis of a small amplitude in the perturbation is necessary in order to legit-
imize the linearization of equations.
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Figure 9.5 – Chemical reproductions of leopard and jaguar patterns, created
with some variant of the Turing model. The top figures are real and the
bottom ones were obtained with numerical simulations. The real leopard
fur (top left) and the real jaguar fur (top right) present spot patterns
early on in their development (of the same type as honeycomb patterns).
A Turing-type model reproduces the different motifs for adults: leopard
spots (bottom left) and polygons for the jaguar (bottom right). [From [62]
R.T. Liu, S.S. Liaw & P.K. Maini. Two-stage Turing model for generating
pigment patterns on the leopard and the jaguar, Physical Review E, 74(1):
011914, 2006, c© American Physical Society]

cases with the adoption of more complex geometries for the substrate (such
as a curved geometry) on which the reaction takes place. The Turing model
which creates the structures associated with the shell pattern or animal fur
has been resolved numerically with methods that are now taught as classics
in the elementary courses on numerical simulations.

Close to the instability’s threshold, all the well-ordered structures – stripes,
honeycombs, squares, etc. – are possible. As we go farther from the threshold,
the structures can become more complex. Perfect order becomes a combina-
tion of order and disorder (or order with defects). Balancing between param-
eters and initial conditions allows one to reproduce images such as the ones
shown in figure 9.5 (see [62]). Generally, if we begin with a Turing system, an
appropriate combination of parameters (and sometimes adding a third con-
centration field) can also produce the different structures seen in figure 9.5,
and more – such as the patterns observed on shells or tropical fish. For more
details, we suggest the works which have become the inequivocal references
in the domain [69, 70, 76].
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