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to a reduction in local pressure, possibly to a value below the vapor pressure of the
liquid, thus producing vapor. A similar phenomenon can be found in volumetric
pumps for fuel injection in engines. Head losses and rapid acceleration of the
liquid column can result in low pressures, causing cavitation and consequent
partial filling of the chamber.

1.1.2. VAPOR PRESSURE

The concept of vapor pressure is best considered from the viewpoint of classical
thermodynamics. In the phase diagram for, say, water (fig. 1.1), the curve from
the triple point Tr to the critical point C separates the liquid and vapor domains.
Crossing that curve is representative of a reversible transformation under static (or
equilibrium) conditions, i.e. evaporation or condensation of the fluid at pressure pv,
known as the vapor pressure. This is a function of the temperature T.

Following from this, cavitation in a liquid can be made occur by lowering the
pressure at an approximately constant temperature, as often happens locally in real
flows. Cavitation thus appears similar to boiling, except that the driving mechanism
is not a temperature change but a pressure change, generally controlled by the flow
dynamics.

1.1
Phase diagram

In most cases (with cold water,
in particular), only a relatively
small amount of heat is
required for the formation of
a significant volume of vapor.
The surrounding liquid (the
heat source for vaporization)
therefore shows only a very
minor temperature change.
The path in the phase diagram
is practically isothermal (see
fig. 1.1).

However, in some cases, the heat transfer needed for the vaporization is such that
phase change occurs at a temperature T' lower than the ambient liquid temperature T.
The temperature difference T T- ' is called thermal delay in cavitation.

It is greater when the ambient temperature is closer to the critical temperature of
the fluid. This phenomenon may become important e.g. when pumping cryogenic
liquids in rocket engines. It will be considered in chapters 5 and 8.
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From a purely theoretical point of view, several steps can be distinguished during
the first instants of cavitation:
— breakdown or void creation,
— filling of this void with vapor, and
— eventual saturation with vapor.

In reality, those phases are effectively simultaneous with the second step being
so rapid that instantaneous saturation of the void with vapor can be justifiably
assumed.

It must be kept in mind that the curve pv (T) is not an absolute boundary between
liquid and vapor states. Deviations from this curve can exist in the case of rapid
phase change.

0

p

pv (T) A B

LIQUID
+ VAPOR

VAPOR
LIQUID

Critical
point

T = Ct

M

ϑ = 1/ρ

VAN DER WAALS curve: (p + — ) (ϑ − b) = RTa
ϑ2

pr
es

su
re

  
p 

>
 0

te
ns

io
n 

 p
 <

 0

1.2 - Andrews- isotherms

Even in almost static conditions, a phase change may occur at a pressure lower than
pv. For example, consider the so-called ANDREWS-isotherms in the p - J diagram,
where J r= 1/  is the specific volume and r the density (fig. 1.2). Such curves can
be approximated in the liquid and vapor domains by the VAN DER WAALS equation
of state. The transformation from liquid to vapor along the path AM can be
avoided, provided special care is taken in setting up such an experiment. Along
this path, the liquid is in metastable equilibrium and even can withstand negative
absolute pressures, i.e., tensions, without any phase change.
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the RAYLEIGH-PLESSET equation (3.12) can be written as follows:
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The term on the left-hand side represents the variation in kinetic energy of the liquid
body. The first term on the right-hand side represents pressure forces acting on the
liquid, while the surface tension forces are represented by the second term. The
dissipation rate due to viscosity is expressed as 2m te e dij ijÚÚÚ , where eij stands for

the deformation rate tensor and the integral is taken over the entire liquid volume.
This gives the last term.

3.2. THE COLLAPSE OF A VAPOR BUBBLE

3.2.1. ASSUMPTIONS

In the present section, the effects of viscosity, non-condensable gas and surface
tension are all ignored.

Before the initial time, the bubble is supposed to be in equilibrium under
pressure p•0, which is equal to pv, according to equation (3.5). From the instant t = 0,
a constant pressure p• , higher than pv, is applied to the liquid. It results in the
collapse of the bubble in a characteristic time t  called the RAYLEIGH time.

This simple model allows us to describe the global features of the first bubble
collapse for an almost inviscid liquid such as water. However, it does not provide
an account of the successive rebounds and collapses actually observed in various
physical situations. It should be noted that, if surface tension were not ignored, the
collapse would be only slightly accelerated.

3.2.2. THE INTERFACE VELOCITY

With the previous assumptions, the RAYLEIGH-PLESSET equation (3.12) can be
integrated using relation (3.13) to give:
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As Ṙ is negative during collapse, one obtains:
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The radius tends to 0 and the radial inwards motion accelerates without limit. The
numerical integration of this equation allows the calculation of the radius R(t) as a
function of time. The characteristic collapse time or RAYLEIGH time is:
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The constant 0.915 is the approximate value of p
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 where G is the factorial

gamma function.

3.2
Evolution of R(t) and Ṙ(t)

during bubble collapse

The value of t is in good agreement with the
experimental values for a large range of initial
values of the bubble diameter from about one
micrometer to one meter. As an example, in the
case of water, a bubble with an initial radius of
1 cm collapses in about one millisecond under an external pressure of 1 bar.

The behavior of R(t) and ˙ ( )R t  are shown in figure 3.2. While the mean value of
the collapse velocity is R0 /t , Ṙ  tends to infinity at the end of collapse. For R
approaching 0, the interface velocity has the following strong singularity:
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 At the end of the collapse, the radius evolves according to the law:
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With the previous numerical values, it is found that ˙ /R m sª 720  for R R/ /0 1 20= .
Such high values of velocity, of the order of half of the velocity of sound in water,
lead us to believe that liquid compressibility must be taken into account in the final
stages of collapse.

It must be kept in mind that some other physical aspects, such as the presence of
non-condensable gas or the finite rate of vapor condensation, will modify bubble
behavior. However, the RAYLEIGH model exhibits the main features of bubble
collapse, particularly its short duration and the rapid change in its time scale.
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3.2.3. THE PRESSURE FIELD

The pressure field p(r,t) can be determined from equation (3.9) in which Ṙ is known
from equation (3.16) and ˙̇R can be deduced by derivation, which gives:
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The result of the calculation is:
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The behavior of non-dimensional pressure P  at several instants is shown in

figure 3.3. It exhibits a maximum within the liquid as soon as the bubble radius
becomes smaller than 1 4 0 633

0 0/ .( ) @R R . The maximum pressure is:
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and it occurs at distance rmax from the bubble center given by:
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When R R/ 0 becomes small, the two previous relations give approximately:

P max /
.ª È

ÎÍ
˘
˚̇

@ È
ÎÍ

˘
˚̇

1
4

0 157
4 3

0
3

0
3R

R
R
R

(3.24)

r
R
max .ª @4 1 593 (3.25)

Very high pressures close to the bubble interface are reached. For example, for
R R/ /0 1 20= , p barsmax ,= 1 260  if p pv• -  is one bar.

Attention must be paid to the kind of pressure wave that appears in figure 3.3
during the collapse of the bubble. As only pressure and inertia forces are taken into
account in the present model, this pressure wave propagating inward must be
considered as the effect of inertia forces only. More complicated models exhibit a
similar behavior.
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From a physical viewpoint, the violent behavior of bubble collapse results from
two main facts:
—  the pressure inside the bubble is constant and does not offer any resistance to

liquid motion;
—  the conservation of the liquid volume, through spherical symmetry (eq. 3.6),

tends to concentrate liquid motion to a smaller and smaller region.
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3.3 - Evolution of the pressure field during bubble collapse

3.2.4. REMARK ON THE EFFECT OF SURFACE TENSION

If surface tension is taken into account, equation (3.16) becomes:
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The accelerating effect of surface tension becomes significant if:
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6. SUPERCAVITATION

As the cavitation parameter is decreased, a small cavity attached to a hydrofoil will
extend and grow longer and longer. It becomes a supercavity as soon as it ceases
to close on the cavitator wall but inside the liquid, downstream of the cavitator.
Simultaneously, the lift of the hydrofoil decreases while its drag increases.

6.1 - Supercavity behind a two-dimensional NACA 16012 hydrofoil
(REYNOLDS number 106, cavitation parameter 0.07, angle of attack 17 deg.)

For very high relative velocities between the liquid and the body, it is practically
impossible to use non-cavitating foils, such as the conventional ones used in aero-
dynamics. In such cases, different types of supercavitating foils have been designed
for better efficiency, such as truncated foils with a base cavity or supercavitating foils
with non-wetted uppersides.

This chapter begins with a presentation of the main physical aspects of supercavities
(§ 6.1). Although the background of applications was chosen rather on the side of
two-dimensional, lifting bodies, most of the features are applicable to axisymmetric
supercavities. After a section devoted to the basis of flow modeling (§ 6.2), some
typical results are given in section 6.3. The case of axisymmetric supercavities is
considered at the end of the chapter (§ 6.4).
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8.1.2. CAVITY PATTERNS ON A TWO-DIMENSIONAL FOIL

In the case of hydrofoils, various cavity flow patterns can be observed according to
the angle of attack and the cavitation number. For a proper observation of attached
cavities in a hydrodynamic tunnel, it is essential to eliminate as much as possible
traveling bubble cavitation in favor of attached cavities, and hence to use strongly
deaerated water, so that almost no nucleus is activated.

Figure 8.3 gives a mapping of the various cavity flow patterns which have been
observed on a NACA 16012 hydrofoil, for a fixed REYNOLDS number, when the
incidence and the cavitation number (or simply the ambient pressure) are modified
[FRANC & MICHEL 1985].

For small values of the cavitation number, supercavitation is observed for any
angle of attack. The supercavity detaches itself from the rear part of the foil for an
angle of attack of around zero (region 1), and the detachment point progressively
moves upstream, towards the leading edge, as incidence increases. The detachment
line is almost straight in the spanwise direction in regions 1 and 3, whereas it
becomes strongly three-dimensional in the intermediate zone 2.

In region 1, the detachment point is far downstream of the point of minimum
pressure, which is close to the point of maximum foil thickness. Thus, as for trans-
critical flow around a cylinder, the liquid particles are in a metastable state in front
of the cavity. This is why deaerated water is needed to observe this cavity flow
regime.

For high values of the cavitation number, the pattern progressively evolves from a
partial pure vapor cavity (region 3'), to a two-phase cavity (region 4) with a smaller
void fraction and, finally, to cavitation in the shear layer bordering the recirculating
zone due to stall at high angle of attack (region 5).

Within a very narrow domain of attack angles (around 4 degrees), the behavior of
the cavity flow is rather unexpected. When the cavitation number is decreased from
non-cavitating conditions, a leading edge cavity appears first. As the cavitation
number is further decreased, the leading edge cavity completely disappears
before a new cavity develops, at sufficiently low values of the cavitation number.
The disappearance of the leading edge cavity is associated with an unexpected
displacement of the detachment point, which moves downstream as sv decreases
until the cavity disappears. This behavior, connected to the S-shaped limiting
curve, results from the strong interaction between the cavity and the boundary
layer. Similar behavior of the detachment point was also observed by MICHEL

(1988) on a different foil, for velocities of up to 30 m/s, and approximately the
same sv-values.



8 - BUBBLES AND CAVITIES ON TWO-DIMENSIONAL FOILS 173

PARTIAL CAVITATION

SHEAR CAVITATION

TWO-PHASE
CAVITY

SUPERCAVITATION

3'
4

5

2

1.2

0.81

0.49

0.33

0.21

0.13

0.07

0.045
0 4 8 12 16

Angle of attack [degree]

C
av

ita
tio

n 
nu

m
be

r 
σ v

1

3

NON CAVITATING

8.3 - Cavity patterns on a NACA 16012 hydrofoil at Re 106=
in strongly deaerated water

The foil is set at mid-height in the free surface channel of a hydrodynamic tunnel.
The foil chord is 0.10 m and the channel height 0.40 m [from FRANC & MICHEL, 1985].
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The radial equilibrium equation:

∂
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(10.22)

allows us to compute the radial pressure distribution and more especially the
minimum pressure pmin at the vortex center from the pressure at infinity p• .

For a RANKINE vortex, the minimum pressure is given by:
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whereas, for a BURGERS vortex, it is given by:
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Cavitation occurs on the vortex axis when the minimum pressure falls below the
vapor pressure pv. The velocity and pressure distributions for both models are
compared in figure 10.6.

10.2.3. TIP VORTEX STRUCTURE

Tangential velocity

In the past, experimentation has been the only means of obtaining information on
the vortex structure. STINEBRING et al. (1991) were the first to measure the velocity
field at a small distance from the tip, in the case of a trapezoidal lifting surface.
They showed that the vortex is fully three-dimensional in the close wake of the
wing.

FRUMAN et al. (1991, 1992a, 1992b, 1993) and PAUCHET et al. (1993) conducted
systematic measurements of the axial and tangential components of the velocity at
various stations within a short distance downstream of the tip. Figure 10.7 presents
the evolution of the tangential velocity profiles along the tip vortex for an elliptical
foil. Let us recall that the tip vortex flow is not axisymmetric in the vicinity of the
tip and that figure 10.7 gives only a partial idea of the vortex structure.

A central zone with solid body rotation is clearly visible. The rotation rate is very
high, larger than 1,000 revolutions per second for the present operating conditions.
The maximum velocity first increases rapidly, reaches a maximum at a distance of
about 0.125 cmax before decreasing slowly.
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10.7 - Tangential velocity profiles at different stations z along the vortex path
(NACA 16020, maximum chord length at root c mm= 40 , AR = 3 8. ,

incidence = ∞10 6.  and V = 9 m/s)
The component presented here is that along the x-axis. It is non-dimensionalized by
the incoming velocity V and plotted as a function of the distance y from the vortex
center [from FRUMAN et al., 1992b].




