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Chapter 1

Differential Calculus

1.1. Introduction

In this chapter, we review and reinforce the basics of differential calculus in
preparation for our subsequent study of manifolds.

The majority of the concepts and results studied are generalization of
concepts and results from linear algebra. We have a veritable dictionary:

smooth function — linear map
local diffeomorphism — invertible linear map
submanifold — vector subspace

It’s necessary to understand and make this dictionary explicit.

1.1.1. What Is Differential Calculus?

Roughly speaking, a function defined on an open set of Euclidean space is
differentiable at a point if we can approximate it in a neighborhood of this
point by a linear map, which is called its differential (or total derivative).
This differential can be of course expressed by partial derivatives, but it is
the differential and not the partial derivatives that plays the central role.

The basic result, aptly called the “chain rule” assures that the differential of
a composition of differentiable functions is the composition of differentials.
This result gives, amongst other things, a convenient and transparent way
to compute partial derivatives of compositions, but for us this will not be
essential.

A fundamental notion is that of a diffeomorphism. By this we mean a differ-
entiable function that admits a differentiable inverse. By the chain rule, the
differential at every point of a diffeomorphism is an invertible linear map.
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hereafter, unless otherwise mentioned,

we assume all maps are smooth

1.5. Submanifolds

1.5.1. Basic Properties

Intuitively, a submanifold of dimension p in R
n is a union of small pieces each

of which can each be straightened in a way to form open subsets of Rp. One
can convince oneself for a circle that two pieces are necessary (and sufficient!).

Definition 1.20. A subset M ⊂ R
n is a p-dimensional submanifold of Rn

if for all x in M , there exists open neighborhoods U and V of x and 0 in R
n

respectively, and a diffeomorphism

f : U −→ V such that f(U ∩M) = V ∩ (Rp × {0}).

We then say that M is of codimension n− p in R
n.

This definition is better understood with Figure 1.3 kept in mind. We note
that p is unique, in other words that M is not a manifold of dimension p1 6= p.
The verification of this is left to the reader, unless they cannot wait until they
read the next chapter, where this question will be elucidated in a more general
setting.

f (U ) =V

R
p

M

U

f

Figure 1.3: Submanifold

Remark. In this definition we can of course replace 0 and R
p × {0} by any

point and any affine subspace of dimension p.
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Proposition 2.3. Let M ⊂ R
n be a submanifold of dimension p, and let

(Ω1, g1) and (Ω2, g2) be two parametrizations.

Then
g−1
2 ◦ g1 : Ω1 ∩ g−1

1

(
g2(Ω2)

)
−→ Ω2 ∩ g−1

2

(
g1(Ω1)

)

is a diffeomorphism.

Proof. Let m ∈ g1(Ω1)∩g2(Ω2) (there is nothing to show if this intersection
is empty). By Definition 1.20 there exists an open subset U containing m and
a diffeomorphism f from U to R

n such that f(U ∩M) = f(U) ∩ ({0} ×R
p).

Then f ◦ g1 and f ◦ g2 are immersions from Ω1 and Ω2 to R
n. Now if we

consider these maps as maps with values in R
p, we obtain smooth homeo-

morphisms with invertible differentials, and therefore these maps are diffeo-
morphisms. The same argument applies to

(f ◦ g2)−1 ◦ (f ◦ g1) = g−1
2 ◦ g1.

As is often the case in mathematics, we take a property verified in its natural
setting and elevate it to an axiom.

Definitions 2.4

a) Two charts (U1, ϕ1) and (U2, ϕ2) of a topological manifold M are
compatible to order k ( 1 6 k 6 ∞) if U1 ∩ U2 = ∅ or if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) −→ ϕ2(U1 ∩ U2)

(called a transition function) is a Ck diffeomorphism.

U1

U2

φ2
 o φ1

–1
φ1(U1)

φ2(U2)

φ1

φ2

R
n

Figure 2.1: Transition function

b) A Ck atlas of a topological manifold M is an atlas (Ui, ϕi)i∈I of M such
that any two charts are compatible to order k.

Take for example a smooth submanifold of codimension 1 in R
n, defined

by a submersion f : R
n → R. This submanifold admits a smooth atlas
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3.5. The Tangent Bundle

3.5.1. The Manifold of Tangent Vectors

On a manifold, as we have seen, the notion of derivation makes sense. Under
these conditions, we would like to have analogous result to Theorem 3.11
for derivations at a point: a derivation on a manifold M should allow us
to associate to each point m in M a tangent vector Xm of TmM , with this
correspondence being smooth in a sense that we will make precise. To do
this, we will show that the set of tangent vectors is itself a manifold in a
natural way. We first set

TM =
∐

m∈M
TmM.

For the moment, TM is the disjoint union of different tangent vector spaces
to M , without a topology. For each chart (U,ϕ), the map

Φ : (x, ξ) 7−→ (ϕ(x), Txϕ · ξ)

is a bijection from TU to ϕ(U)×R
n.

Given an atlas (Ui, ϕi)i∈I of M , we equip TM with a topology by imposing
the following conditions:

1) the sets TUi are open subsets of TM ;

2) the maps Φi are homeomorphisms.

Then Ω ⊂ TM is open if and only if Φi(Ω ∩ TUi) is an open subset of
ϕ(Ui) × R

n for every i. To see that these conditions are consistent, we
remark that by the same definition of tangent space, if Ui ∩Uj 6= ∅, the map

Φi ◦ Φ−1
j : ϕj(Ui ∩ Uj)×R

n −→ ϕi(Ui ∩ Uj)×R
n

given by

(y, v) 7−→
(
(ϕi ◦ ϕ−1

j )(y), Ty(ϕi ◦ ϕ−1
j ) · v

)

is a homeomorphism and even a diffeomorphism.

We have therefore defined a topology on TM which makes it a topological
manifold with the atlas (TUi,Φi)i∈I . As this atlas is smooth, TM is a smooth
manifold of dimension 2 dimM . At this stage, it is important to remark that
if M is a Cp manifold (with p > 0), then TM is a Cp−1 manifold. This
manifold is called the tangent bundle to M . We justify this name.

Proposition 3.24. The canonical projection p from TM to M is a fibration.
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4.3. The Lie Algebra of a Lie Group

4.3.1. Basic Properties; The Adjoint Representation

For a Lie group, we have just seen that it is the same thing to have

a left invariant vector field;

a vector in the tangent space to the identity;

a one-parameter subgroup.

In particular, every algebraic operation defined on one of these objects, such
as the bracket for left invariant vector fields, can be transported to the others.

Definition 4.9. A Lie algebra over a field K is a vector space L over K,
equipped with a bilinear map from L × L to L, called the bracket, denoted
[ , ], such that

i) ∀X ∈ L, [X,X ] = 0.

ii) ∀X,Y, Z ∈ L, [[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 (Jacobi identity).

Examples

a) Any vector space equipped with the zero bracket is a Lie algebra. This is
the only case (at least in characteristic not equal to 2) where a Lie algebra
is commutative, as calculating [X+Y,X+Y ] shows that [X,Y ]+[Y,X ] = 0.

b) The results of Section 3.6 may be reformulated by saying that for every
smooth manifold M , the vector space C∞(TM) equipped with the Lie
bracket is a Lie algebra (of infinite dimension, since C∞(M) is already
infinite dimensional).

c) By Proposition 4.4, the left invariant (or right invariant) vector fields on
a Lie group form a finite-dimensional Lie algebra.

Definition 4.10. A morphism of Lie algebras L and L′ over the same field
K is a linear map f from L to L′ such that

∀X,Y ∈ L, f([X,Y ]) = [f(X), f(Y )].

If f is invertible, it is clear that f−1 is also a morphism. We then say that
f is a Lie algebra isomorphism.

Example. Again by Proposition 4.4, I∗ is an isomorphism between the alge-
bras of left and right invariant vector fields on G.

By transporting the structure, the tangent space to the identity of a Lie group
is equipped with a Lie algebra structure.
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5.2. Multilinear Algebra

5.2.1. Tensor Algebra

Let E be a vector space over a field K. The dual space L(E,K) = E∗ is the
vector space of K-linear maps from E to K, also called linear forms. Suppose
E has dimension n, and suppose (ei)16i6n is a basis. If

v =

n∑

i=1

viei

is the decomposition of a vector with respect to this basis, we denote by ei∗

the linear form v 7→ vi, which associates to every vector its i-th coordinate.
Then if α ∈ E∗, we have

α(v) =
n∑

i=1

viα(ei) =
n∑

i=1

α(ei)e
i∗(v)

for all v. In other words the linear form α may be written as the linear
combination

α =
n∑

i=1

α(ei)e
i∗.

In particular, (ei∗)16i6n is a basis of E∗, called the dual basis to (ei)16i6n.

We use the Einstein summation convention. When we index a family of
vectors or a vector field, we write a lower index. A good mnemonic is to think
of vector fields ∂i. When we index forms, we use an upper index, whether
actual forms like ei∗, or their values on a vector such as the numbers vi.
When we decompose a vector (resp. a form) with respect to a basis, we place
the indices of the coefficients in upper (resp. lower) position as we have just
done. Physicists have profited from the convention that an expression where
the same index appears both in upper and lower position as representing a
sum over this index. For our part we will not omit the summation signs, but
we will adopt the convention above for the placement of indices. This usage
allows us to see at a glance whether we are working with vectors or forms.

Definition 5.1. A linear k-form on E is any map

L :

k times︷ ︸︸ ︷
E × · · · × E −→ K

such that the component functions

xr 7−→ L(x1, . . . , xk)

are linear forms on E.
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Examples

a) Consider the disk with center 0 and radius a in R
2 equipped with the

natural Euclidean norm. The boundary is the circle of center 0 and
radius a. In a neighborhood of a point p on the circle, we take polar
coordinates (r, θ). In these coordinates, the volume form dx ∧ dy may
be written rdr ∧ dθ, and with the notations of Lemma 6.23, we can take
ϕ1 = r − a, ϕ2 = θ. The orientation of the circle is given by dθ. In other
words, θ 7→ (a cos θ, a sin θ) preserves the orientation. We say that the
circle is oriented counterclockwise.

b) We can reconsider the discussion for a circular annulus C(a, b), where
a < b. As a result of the above, the circle of radius b is oriented in the
trigonometric sense. Conversely, in a neighborhood of the circle of radius
a we must take ϕ1 = a − r, thus ϕ2 = −θ. The orientation is thus the
opposite to the trigonometric orientation.

Figure 6.2: Oriented boundary of an annulus

In the same way, if D is a closed annulus of Euclidean space, ∂D has two
connected components which are spheres with opposite orientations.

c) Figure 6.3 can be deduced in the same way as in b).

Figure 6.3: Another oriented boundary
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d) Let M be a compact submanifold of codimension 1 in R
n. Then by

Alexander’s theorem (cf. [Bredon 94]), Rn
rM has two connected compo-

nents, one of which is bounded. The closure of the bounded component
is a regular domain with boundary M . In particular, M is orientable.
For n = 2, this result is called Jordan’s theorem. It is already nontrivial
(see [Berger-Gostiaux 88, 9.2]) or [Do Carmo 76, 5.7].

e) The case where dimD = 1 merits special attention as the preceding proof
does not apply directly. Now ∂D consists of a finite number of points (in
fact 2 if D is connected). An “orientation” of a point is a choice of sign ±
(the forms of degree 0 are functions which are constant here). A boundary
point p is assigned the sign + if in a neighborhood of p,D is defined by
x 6 0, where x is a local coordinate compatible with the orientation of D,
and is assigned − otherwise. Notice {b} − {a} is the oriented boundary
of [a, b] in R.

6.4.3. Stokes’s Theorem in All of Its Forms

Theorem 6.25 (Stokes). Let D be a regular domain of an oriented mani-
fold M of dimension n, ∂D is oriented boundary, and let α ∈ Ωn−1(M).
Then ∫

∂D

α|∂D =

∫

D

dα.

Example. If D is the interval [a, b] ⊂ R, then α is a function f , and with
the preceding convention we have

∫

∂[a,b]

f = f(b)− f(a),

and we recover the fundamental theorem of calculus:

f(b)− f(a) =

∫ b

a

f ′(x) dx.

Proof. First, take an open set V containing D whose closure is compact.
We can cover V by a finite number of domains of charts Ui such that if Ui
intersects ∂D, then Ui∩∂D = {x, x1 = 0}, the orientation of ∂D being given
on Ui∩∂D by ϕ∗

i (dx
2 ∧· · · ∧dxn). If fi is a partition of unity subordinate to

this cover, we have α =
∑
i∈I fiα, and it suffices to prove the result for the

αi = fiα, which is to say for forms supported within the open subset Ui.

Thus let α be such that Suppα ⊂ Ui. There are three cases to consider:

1) If Suppα ⊂ M rD, then α vanishes on ∂D, and dα vanishes on D. The
result is then clear.
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unit tangent vector, and n(s) is the vector such that the frame
(
τ(s), n(s)

)

is positively oriented.

For a triangle formed by three C2 arcs with angles (βi)16i63, we then have

β1 + β2 + β3 = π +

∫

T

k(s) ds

or, by introducing the exterior angles αi,

α1 + α2 + α3 +

∫

T

k(s) ds = 2π.

α1

α2

α3

Figure 8.1: Gauss-Bonnet for a triangle

In case there is no angle at a point, αi = 0 and βi = π, we obtain
∫

T

k(s) ds = 2π.

This is the Umlaufsatz or theorem of turning tangents, see [Berger-
Gostiaux 88, 9.5] or [Chavel 83, 4.6].

These results are natural: knowing that k(s) = ϕ′(s), where ϕ is the angle
τ(s) forms with a fixed vector, this simply says that the unit tangent vector
turns exactly 2π. Natural does not mean easy to prove however, as in the
example of Jordan’s theorem which ensures that the complement of a simple
closed curve has two connected components.

This formula was generalized by C.-F. Gauss (who did not publish it) and by
P.-O. Bonnet to triangles constrained to a surface. The curves which replace
straight lines are geodesics, which is to say curves that minimize length, and
the function k(s), whose vanishing characterizes geodesics, is the algebraic
measure of the orthogonal projection of the acceleration onto the tangent
plane. (See [Do Carmo 76, p. 248].)
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6*. Forms invariant under a group

a) Use the fact that

ω = iX(dx0 ∧ · · · ∧ dxn), where X is the radial vector field.

To see that Ω is the only form of degree n which is invariant under
Sl(n+ 1,R), note first that Sl(n+ 1,R) acts transitively on R

n+1
r {0},

and such a form is determined on R
n+1

r {0} by its value at e0 =
(1, 0, . . . , 0) for example. We thus reduce to showing that e1∗ ∧ · · · ∧ en∗
is the only n-linear alternating form (up to a factor) which is invariant
under the subgroup of Sl(n + 1,R) which fixes e0 (here we denoted the
basis dual to the canonical basis of Rn+1 by (ei∗)06i6n).

b) Take inspiration from 12, c4) further below.

7. The primitive of
α =

∑

16i<j6n

αijdx
i ∧ dxj

thus obtained is

β =
∑

16i<j6n

(∫ 1

0

αij(ux) du

)
(xi dxj − xj dxi).

8. Forms invariant under a Lie group

b) It suffices to calculate dω(V0, . . . , Vp) for left invariant vector fields by
applying Theorem 5.24.

c) We have dX−1 = −X−1dXX−1 (compare to the case of the linear group
seen in Section 1.2). If Ω = X−1dX , we have

dΩ + Ω ∧ Ω = 0,

where the matrix Ω ∧ Ω is defined by

(Ω ∧Ω)ji =
∑

k

(Ω)ki ∧ (Ω)jk.

If U and V are two left invariant vector fields, we deduce that

dΩ([U, V ]) = (Ω ∧ Ω)(U, V ).

We discover the expression for the bracket by evaluating each side at the
identity element.

d) Restrict the matricesX−1dX and (dX)X−1 to G. The vector space of left
invariant forms of degree 1 is generated by a−1da and a−1db, and that of
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