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Thus man works with magnetic field intensities spanning a scale of 17 decades
(fig. 1.6); for reference, the earth’s magnetic field is of the order of a few tens of
amperes per meter.
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Figure 1.6 - Range of experimentally accessible magnetic fields

Permanent magnets

Our grandmothers used only horse-shoe shaped magnets to collect their sewing
needles, as magnets of the day had a tendency to spontaneously demagnetise, and this
specific shape led to maximum “flux line” closure, and thus minimised the risk of
demagnetization (see fig. 1.2).
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Figure 1.7 - Evolution in the performance of permanent magnets
as characterised by their energy products

Logarithm of the maximum energy product ([BH]max) expressed in kJ . m –3 and
plotted as a function of the date of their arrival on the permanent magnet market for
different materials belonging to the five principal industrial magnet families,
after [11]. The concept of induction, magnetic field and energy product will be
discussed in the following chapter.

Today’s Nd-Fe-B magnets can remain magnetised in thin sheet form, even when
magnetised perpendicular to the plane of the sheet. The progress made over 150 years
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1.2.2. The determination of B (and A) from bound currents:
the Ampérian approach

In the presence of matter, one can show (see appendix § 3 at the end of this chapter)
that the determination of the induction B and the vector potential A at all points in
space can be reduced to a problem of electromagnetism in vacuum where two types
of current have to be considered:
♦ on the one hand the real free currents with density j0, and
♦ on the other hand the currents associated with the magnetised material, or bound

currents, with volume and surface densities, jm and jms respectively, given by:

jm  =  curl M (2.32)

j M nms = × ˆ (2.33)

where n̂  is the unit vector normal to the surface of the material, and pointing
outwards. equation (2.32) reduces to (2.33) when one only considers the surface
as the transition between the material (M ≠ 0 inside) and the vacuum (M = 0
outside), and going to the limit where δ (the thickness) goes to zero. One can thus
determine B using the method given in section 1.1.3 taking j = j0 + jm.

Notes

♦ When the magnetization is uniform, which is often the case, jm = 0, and only the
surface current density jms is left. An example, the B field produced everywhere
(inside and outside of the cylinder) by a cylinder uniformly magnetised along its
cylindrical axis is the same as from a solenoid of current density (current per unit
length along the solenoid) | jms | = |M| (see fig. 2.9).

♦ The conditions at the interface between two materials are the same as those given
in section 1.1.4, taking into account the fact that i (or rather is in eq. 2.15) is the
sum of the free and bound current densities.

♦ One can always write that:

B  =  B’0 + Bm (2.34)

where B’0 and Bm are the contributions from the free currents and magnetised
material respectively.

M ≡
|jms|  =  |M|

B

Figure 2.9 - The equivalence between magnetization and surface current density
in the case of a cylinder uniformly magnetised parallel to its cylindrical axis
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Along <100>, magnetization is the highest, and it reaches its maximum value in very
low field; it is the easy magnetization direction. In zero field, the material is divided
into six types of domains, called phases, in which the spontaneous magnetization Ms

is directed along one of these directions. When the field is applied along the <110>
and <111> axes, the phase rule is observed: in very weak field the magnetization
remains parallel to <100>, and the magnetizations extrapolated to zero internal field,
M<110> and M<111> (fig. 3.15), correspond to the projection of the spontaneous
magnetization M<100> = Ms along each of these directions (M<110> = Ms / 2 , and
M<111> = Ms / 3 ).

An analysis similar to that previously developed in the uniaxial situation shows that:
♦ the area between the curves measured as a function of the internal field H along the

<100> and <110> directions is equal to K1 / 4,
♦ and the field for which these two curves meet can be written as HA<110> = 2K1 / µ0Ms.

2.4.3. Magnetic anisotropy in the paramagnetic state

Let us note that in uniaxial systems, of hexagonal or tetragonal symmetry for
instance, in which magnetism originates from rare earth atoms having L ≠ 0 (see
chap. 7), the strong magnetocrystalline anisotropy of the latter leads to an anisotropy
of the magnetic susceptibility. In particular, above the ordering temperature, two
shifted Curie-Weiss laws are observed for the susceptibilities parallel and
perpendicular to the high symmetry c axis, namely:
1 / χ|| = (T – θp||) / �  and 1 / χ⊥ = (T – θp⊥) / � . In this case the difference between the
parallel (θp||) and perpendicular (θp⊥) paramagnetic Curie temperatures is a measure
of the main contribution to the anisotropy, namely the second order term.

2.5. TIME DEPENDENT PHENOMENA

Once a magnetic field is applied on a ferromagnetic substance, the magnetization of
the latter reaches a value which depends on the intensity of the magnetic field, on the
nature of the substance, on the temperature, but also on the history of the considered
sample: in particular, magnetization often strongly depends on the order in which
thermal treatments, mechanical stresses, and variations of the magnetic field have
been made. However another key parameter has also to be considered, namely time,
because time dependence of magnetic properties is often observed: a substance
submitted to a magnetic field does not immediately reach a final and well defined
magnetization.

Many effects contribute to this time dependence of magnetization:

♦ aging means an evolution of magnetic properties associated with irreversible
modifications of the structure of the material under investigation (for instance,
formation of precipitates); these structural modifications result from mechanical
treatments, chemical effects (oxidation or others) or from atomic diffusion
phenomena.
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♦ various relaxation phenomena can also be observed. We will see in section 2 of
chapter 4 that a certain time interval, which can reach 10 

–12 to 10 –7 s, elapses
before an atomic magnetic moment becomes parallel to the field which has just
been applied; this relaxation phenomenon can be critical in some applications in
fast electronics (see chap. 17 and 23). At the scale of the sample, a relaxation of
electromagnetic origin can also be observed in conductors. It is due to eddy
currents, associated with magnetic flux variations in the material which, during
some seconds or fractions of a second, oppose the penetration of a rapidly
changing field into the metallic material. The speed of the domain wall motion,
measured by Sixtus and Tonks inside metallic fibres [5], is –for instance– in
agreement with what is predicted by calculations which account for the delay
imposed by the eddy currents.

♦ magnetic after-effect: once a magnetic field has been applied, magnetization
changes only after a certain time, and goes on changing during a time range which
allows experiments; there is a delay between the cause and its effect. One
distinguishes the thermal fluctuation after-effect (irreversible), of thermodynamic
character, and occurring in all ferromagnetic substances, and the diffusion after-
effect (reversible) due to motion of particles inside the material. Two major
works [6, 7] give an excellent and detailed presentation of these effects, which are
briefly presented hereafter, and which are developed in section 5 of chapter 6.

2.5.1. Thermal fluctuation after-effect

We have seen in figure 3.5 that, for the same value of the magnetic field, three
different values of magnetization could be obtained: the first corresponds to the initial
magnetization curve, the second is observed when the magnetic field decreases from
a high and positive value, and the third when the field increases from negative values.
Each of these values corresponds to a minimum of the total energy of the system, but
they are metastable equilibria. In particular it is the case of the remanent
magnetization, that is observed when the magnetic field is reduced down to zero after
saturation of the sample. One easily imagines that thermal agitation allows the system
to slowly evolve toward a more stable equilibrium state: the remanent magnetization
then decreases little by little, and tends more and more slowly toward zero, a value
reached for an infinite time. The final equilibrium state (M = 0, H = 0) will be the
same whatever the sign and the intensity of the magnetic field applied before it is
reduced to zero.

This point (M = 0, H = 0) corresponds to the origin of the so called anhysteretic
magnetization curve of the substance. As a matter of fact, to any non zero value H0

of the magnetic field applied to a ferromagnetic substance, there also corresponds a
unique value of the anhysteretic magnetization, the value which would be observed
for an infinite time. However there is a more realistic technique to obtain this
anhysteretic magnetization curve for a soft material. It consists in superposing to the
static field H0 an AC magnetic field which is slowly decreased down to zero: the final



3 - PHENOMENOLOGY OF MAGNETISM AT THE MACROSCOPIC SCALE 99

value is the required magnetization. Figure 3.16 shows the result obtained in this way
on an alloy of iron with a small amount of silicon: the anhysteretic curve has been
plotted in the first quadrant (H > 0, M > 0). It lies above any experimental curve
strarting from the origin (the initial magnetization curve included), and below any
curve measured in decreasing field from a field larger than the saturation field.
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Figure 3.16 - Magnetization curve of a textured Fe-Si alloy:
hysteresis loop and anhysteretic curve

The purely magnetic after-effect that has just been discussed only implies magnetic
moment reversal. The host crystal or amorphous material is assumed to be perfectly
stable: the values of the saturation magnetization and of the magnetocrystalline
anisotropy constants remain constant in this process.

2.5.2. Diffusion after-effect

Contrary to the previous situation, diffusion after-effect is associated with the
reversible diffusion of atoms, and / or of vacancies between interstitial lattice sites of
the magnetic material. This can lead to a variation of its magnetization, and even of its
anisotropy constants: the main magnetic characteristics of the substance are then
modified. This effect takes place only in substances that can contain small size
impurities in interstitial sites (carbon, nitrogen, ...), and it only occurs in the
temperature range where diffusion of these impurities is fast enough. It can be used
to induce, in an initially isotropic material, a uniaxial magnetic anisotropy called
induced anisotropy. In this way, for instance, ferrite manufacturers can optimise the
performance of their products.

3. PHYSICAL PHENOMENA ASSOCIATED WITH MAGNETISM

So far we have considered the effects of an applied magnetic field on the magnetic
response, i.e. magnetization or magnetic induction. In fact magnetism in a substance
also gives rise to secondary effects, which affect all physical properties: thermal,



130 MAGNETISM - FUNDAMENTALS

For the sake of simplicity, one only considers, which is reasonable, the interactions
between moments of the same layer, and between those belonging to first and second
nearest neighbour layers. Let w0, w1 and w2 be the molecular field coefficients due to
the moments of the same layer, and to those of first and second neighbour layers,
respectively. The exchange energy density is then written as:

Eex  =  – µ0 Mc2 (w0 + 2 w1 cos φ + 2 w2 cos 2φ) / 2 (4.64)

Minimizing this energy with respect to φ leads to the equation (w1 + 4w2 cos φ) sin φ = 0,
which is satisfied for three magnetic configurations:
♦ φ = 0, i.e. ferromagnetism,
♦ φ = 180°, i.e. antiferromagnetism,
♦ an angle φ given by:

cos φ  =  – w1 / 4w2 (4.65)

This latter case corresponds to helimagnetism. It is sketched in figure 4.19-a.
Let us notice that this configuration can exist only if |w1 / 4w2| < 1. Furthermore, the
study of the sign of the second derivative of the energy, and comparison of the
energies of these configurations, leads to the phase diagram shown in figure 4.20.
The helimagnetic configuration is the most stable when w2 < 0 and |w2| > |w1 / 4|.
Such a structure is observed in a large number of hexagonal, and to a lesser extent
tetragonal rare earth based compounds.

z (a)

(b)z

z’

z’
φ1 φ2 = 2 φ1

φ2

Figure 4.19 - Helimagnetic (a), and sine wave modulated structures (b)

7.2. SINE WAVE MODULATED STRUCTURE

Let us now consider the case where the uniaxial anisotropy forces the moments to be
along the z axis, i.e. perpendicular to the layers. The only degree of freedom left to
magnetization is then its amplitude: let us assume that it exhibits a sine wave
modulation (fig. 4.19-b) with: Mn = Mmax cos (nφ + φ0), where n = … –2, –1, 0, 1,
2, … numbers the successive layers.
Considering the same exchange interactions as previously, the energy density is
written as:

Eex  =  (µ0 / 2) (Mmax)2 cos φ0{w0 cos φ0 + w1[cos (φ + φ0) + cos (– φ + φ0)]
+ w2[cos (2φ + φ0) + cos (– 2φ + φ0)]}
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solution to the equation). Figure 5.11 shows the evolution of the reduced thickness
δ / a = N (number of interatomic intervals in the wall) as a function of the ratio η of
the anisotropy and exchange constants of the material.
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Figure 5.11 - Wall thickness as a function of $
The reduced thickness of the domain wall is expressed in units of interatomic distances.

3.3. DOMAIN WALLS IN VERY THIN FILMS

In thin film systems, the demagnetising fields are very important in the direction
corresponding to the small dimension, this is why the magnetization in the domains
generally orients itself in the plane of the film. Let us consider two adjacent domains
separated by a 180° wall. A Bloch wall, where moments rotate about the normal to
the surface of the wall (see fig. 5.12-a), leads to the appearance of magnetic poles
which are north on one face of the thin film and south on the other. The associated
magnetostatic energy becomes greater as the ratio of the thickness of the film (e) over
the width of the domain wall (δ) is reduced. Taking this magnetostatic energy into
account leads to a new expression for the the domain wall energy:

γ γ δ
δ

δ
δ

µ
γ

δ= + +










1
2 20

0

0 0
2

0

2M
e

s ,

where γ0 and δ0 are, respectively, the energy, and thickness of the ordinary Bloch
wall. This approximation is valid as long as δ remains small compared to e. This
domain wall energy is thus the sum of three contributions, respectively magneto-
crystalline anisotropy which varies as δ, exchange energy which varies as δ –1, and
dipolar energy which varies as δ2.
γ is not only a function of the properties of the material, but also of the thickness of
the film. For small thicknesses other domain wall structures are favoured. Néel
considered in particular [5] a domain wall structure in which the moments rotate
about the axis perpendicular to the plane of the film (fig. 5.12-b). The contribution of
the magnetic poles is eliminated, but the configuration of the moments inside the wall
leads to stray field.
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A 180° wall, assumed to be plane, rigid and parallel to one of the faces of the cube of
defects, has a surface energy γ. When the position of the wall coincides with any one
of the lattice planes of defects, its surface area is minimal because the surface of the
holes produced by the defects inside the wall is maximal. Per unit area of the wall,
there are 1 / a2 holes, each with an area A = π r2. Thus these lattice planes are energy
minima where, in the absence of a field, the wall is in equilibrium. When displaced
from one of these equilibrium positions by an amount x less than r, the wall area is
now decreased by the defects by only an area A’. The relative variation of the area is
δA / a2 = (A – A’) / a2 = π (r2 – x2) / a2.

The change in energy of a wall in the neighbourhood of the lattice planes is then given
by:

∆Ep(x)  =  π x2 γ / a2 (6.13)

which, for a magnetic system of unit surface area containing only one wall
(fig. 6.8-a), leads to an energy profile schematised in figure 6.8-b. A restoring force
in the direction of the equilibrium position exists only within the zone of width r on
either side of each of the minima (fig. 6.8-c). Its value is:

Fr  =  – dEp / dx  =  – 2 π x γ (6.14)

Decrease of magnetostatic energy associated with the presence of a defect

Although it is not negligible, the role of the demagnetising field in the neighbourhood
of non-magnetic defects was completely ignored in the preceding model. The
magnetostatic energy associated with a non-magnetic spherical void or inclusion with
radius r, completely immersed in a magnetic domain (fig. 6.9-a), is given by:

E M rd s0
2
9 0

2 3= µ π (6.15)
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Figure 6.9 - The strong magnetostatic
energy linked to the state (a) of a spherical

inclusion placed in a medium
with uniform magnetization is reduced if
the wall crosses this spherical inclusion (b)
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where λ is negative for a shell less than half full, and positive for the opposite case,
so that the spin and orbital moments prefer to be anti-parallel and parallel
respectively. In particular λ is negative in the case of a single electron [2].

1.2.4. Multiplets
The degeneracy of each term is partially lifted by the spin-orbit interaction outlined
above. Each new energy level, known as a “multiplet”, is characterised by an integer
or half integer quantum number J which in turn characterises the total angular
momentum hJ such that:

J  =  L + S (7.21)

Within a multiplet, there exists a basis of 2J + 1 states | L, S, J, MJ > such that MJ

can take the values + J to – J in steps of one. They are the eigen states of J2 and Jz

such that:
J2 | L, S, J, MJ >  =  J (J + 1) | L, S, J, MJ > (7.22)

and Jz | L, S, J, MJ >  =  MJ | L, S, J, MJ > (7.23)

Each multiplet is thus 2J + 1 times degenerate. The values of J of the different
multiplets arising from the same term vary from L + S to | L – S | in steps of one. By
squaring equation (7.21) it can be deduced that � so = – (λ / 2) (J2 – L2 – S2). The
energy of a multiplet is thus given by:

EJ  =  <� so>  =  – (λ / 2) [J (J + 1) – L (L + 1) – S (S + 1)].

The ground state multiplet is such that J = L + S if the shell is more than half full, and
J = | L – S | when it is less than half full. If the shell is exactly half full, J = S as Hund’s
rules give L = 0. The spin-orbit coupling increases with the atomic number of the
element under consideration. The difference between two multiplets is typically of the
order of 10 –2 to 10 –1 eV (102 to 103 K) for elements in the iron group, and 1 eV (104 K)
for the rare earths. The schematic diagram in figure 7.7 shows, for the case of the
Cr3+ ion, the different stages leading to the ground state energy of a free atom (or ion).

Figure 7.7 - Splitting of the ground
state configuration of the Cr3+ion

into its terms, and multiplets
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J = 5/2
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At this stage, the further liftings of the degeneracy can only take place as a result
of external perturbations such as a magnetic field (Zeeman effect), or the effects of
neighbouring atoms when the atom is no longer free, and is part of a solid. The
multiplets are generally referred to by symbols such as 2S1/2, 3P0, 4F9/2, etc. This is
the spectroscopic notation where the letters S, P, D, F, G, H, I, … refer to the total
orbital angular momentum L = 0, 1, 2, 3, 4, 5, 6, … respectively. The numbers at the
top left, and bottom right are 2S + 1, and J respectively.

As a result of the energy differences between the different multiplets, one can neglect
the effect of all but the lowest lying multiplet when considering the rare earth
elements (4f series). At normal temperatures the occupation of the higher multiplets
is negligible.

In addition to the electronic structure of the free atom, the periodic table in appendix 3
also gives the spectroscopic ground states. It can be seen from table 3.1 that all non
magnetic free atoms in their ground state are characterised by J = 0 (spectroscopic
levels 1S0, 3P0, 5D0, etc.). It will be shown in what follows that the magnetic
moment of an atom or ion is strictly linked to its quantum number J.

Consider the magnetic moment associated with the orbital angular momentum of a
multiplet. Using equation (7.6), the orbital magnetic moment is written as:

mo  =  – µB L (7.24)

Similarly, using equation (7.9), the spin magnetic moment is written as:

mS  =  – 2 µB S (7.25)

As has been already mentioned, equations (7.24), and (7.25) show that the total
magnetic moment m = m0 + mS has no constraint that forces it to be collinear with
the total angular momentum hJ = h(L + S). In fact, quantum mechanics reveals that
within each multiplet the total magnetic moment and the total angular momentum can
be considered to be collinear, and linked by the formula:

m  =  – gJ µB J (7.26)

where gJ, the Landé g factor, characterises the multiplet under consideration. It is
expressed as a function of J, L, and S such that:

g J = 1 +
J J + 1( ) + S S + 1( ) − L L + 1( )

2J J + 1( ) (7.27)

gJ is 1 or 2 when only the orbital or spin contributions are present respectively, but is
not forced to lie within these values. As an example one can see from table 7.1 that gJ

is less than one when L > S, and when J = L – S.

The main magnetic properties of R3+ ions in the rare earth series are given in
table 7.1. It is in this valence state that these elements are found in most materials.
Note however that cerium can also be tetravalent, and samarium, europium, and
ytterbium can be divalent.



7 - MAGNETISM IN THE LOCALISED ELECTRON MODEL 261

Note - The above result has been established for the almost ideal case of isolated
atoms. It will become apparent in what follows that it holds for substances where the
magnetic atom is not too perturbed by interatomic interactions. Irrespective of the
substance under consideration, it is always possible to write that the magnetic
moment m and the angular momentum £ of the atoms are proportional:

m  =  – g
e

2m e
 £  =  γ £ (7.28)

γ is the gyromagnetic factor. Its value allows the estimation of the relative size of the
orbital and spin contributions (γ = – (e / 2me) and γ = – 2 (e / 2me) respectively) to
the magnetic moment in a given substance.

Points to remember:
♦ Filled electronic shells are not magnetic.
♦ Only non saturated shells have a magnetic moment.
♦ The magnetic moment of free atoms or ions is given by: m = – gJ µB J where hJ

is the total angular momentum. For a given configuration, the quantum number J,
and thus gJ, are determined by Hund’s rules.

Table 7.1 - The main properties of free R3+ ions
of the elements in the rare earth or lanthanide group R

Ion 4f 2S+1LJ L S J gJ m0 (�B) m eff  (�B)

Ce3+ (4f1) 2F5/2 3 1/2 5/2 6/7 2.14 2.54

Pr3+ (4f2) 3H4 5 1 4 4/5 3.20 3.58

Nd3+ (4f3) 4I9/2 6 3/2 9/2 8/11 3.27 3.62

Pm3+ (4f4) 5I4 6 2 4 3/5 2.40 2.68

Sm3+ (4f5) 6H5/2 5 5/2 5/2 2/7 0.71 0.85

Eu3+ (4f6) 7F0 3 3 0 – 0 0

Gd3+ (4f7) 8S7/2 0 7/2 7/2 2 7.00 7.94

Tb3+ (4f8) 7F6 3 3 6 3/2 9.00 9.72

Dy3+ (4f9) 6H15/2 5 5/2 15/2 4/3 10.00 10.65

Ho3+ (4f10) 5I8 6 2 8 5/4 10.00 10.61

Er3+  (4f11) 4I15/2 6 3/2 15/2 6/5 9.00 9.58

Tm3+ (4f12) 3H6 5 1 6 7/6 7.00 7.56

Yb3+ (4f13) 2F7/2 3 1/2 7/2 8/7 4.00 4.53

The concepts of the modulus of the moment (m0) and the effective moment (meff) were
introduced in chapter 4, section 2.2. La3+ and Lu3 +, with their 4f shell being
respectively empty and full, are non magnetic.
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This is immediately confirmed by noting that

Jx | a >  =  (3/2) | a >    and    Jx | b >  =  – (3/2) | b >,

which furthermore indicates that the eigenvalues of Jx are respectively <Jx>a = 3/2,
and <Jx>b = – 3/2.

Therefore the energies under the influence of the perturbation, i.e. in the magnetic
field Hx, are

<E>a  =  – 8B20 + < a | µo Hx gJ µB Jx | a >  =  – 8B20 + (3/2) µo Hx gJ µB, and

<E>b  =  – 8B20 + < b | µo Hx gJ µB Jx | b >  =  – 8B20 – (3/2) µo Hx gJ µB.

We conclude that the ground state, in the presence of the magnetic field along x, is
| b >, and that its magnetic moment is <mx>b = (3/2) gJ µB. Note that for a more
accurate (but less pedagogical) treatment, it is necessary to consider the crystalline
electric field, and Zeeman hamiltonians at the same order of perturbation. This
involves diagonalising directly �cf + �Z within the basis of the 2J + 1 states of the
ground state multiplet.

EXERCISES

E.1 - Determine for the Sm2+ and Eu2+ ions, which have six and seven 4f electrons
respectively, the values of S, L, J, gJ, and the maximum magnetic moment of the
ground state.

E.2 - Iron, in its divalent and trivalent states, has 3d6 and 3d5 external configurations,
respectively. Furthermore, these ions behave in many insulating materials as if their
orbital moment was zero (by virtue of the crystal field). In this framework,
determine, for Fe2+ and Fe3+, the values of S, L, J, gJ, and the maximum magnetic
moment of the ground state.

E.3 - The spin-orbit coupling coefficient, λ, of the Sm3+ and Tb3+ ions is –630 K
and 580 K respectively. Give the values of S, L, J, gJ, and the maximum magnetic
moment of the first excited multiplet for these ions. Also give, in kelvin, the energy
difference between this, and the ground state.

E.4 - Let two identical charges q be located at z = ± a on the z axis. Write the
expansion to second order in r / a of the potential V(r) at a point M near the origin of a
spherical co-ordinate system r, θ, ϕ. Deduce from this the second order term A20 of
the crystal field.
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SOLUTIONS TO THE EXERCICES

S.1 Sm2+: S = 3, L = 3, J = | L – S | = 0, m = 0.

Eu2+: S = 7/2, L = 0, J = 7/2, gJ = 2, m = 7 µB.

S.2 Fe2+: S = J = 3, gJ = 2, m = 6 µB. Fe3+: S = J = 5/2, gJ = 2, m = 5 µB.

S.3 Sm3+: S = 5/2, L = 5, J = | L – S | + 1 = 7/2, gJ = 0.825, m = 2.89 µB,
∆E = 2,205 K.

Tb3+: S = 3, L = 3, J = L + S – 1 = 5, gJ = 3/2, m = 7.5 µB, ∆E = 3,480 K.

S.4 A20 = – | e | q / ε0 a3 5π  where |e| is the charge of an electron. Note that A20 < 0
for q > 0, and vice versa.
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In this alternative expression of Stoner’s criterion, the quantity I is replaced by one
that is more physical, viz the repulsion between two electrons on the same site. This
is just as difficult to calculate in practice because the s electrons of the transition
metals can shield the repulsion between d electrons. Therefore, it usually remains a
parameter that is adjusted to fit experiment. It does show that the magnetism arises
from a local repulsion, on a site, which will be useful in the following sections.

This analysis is at the origin of the theoretical model known as Hubbard’s
hamiltonian [5]. It allows the study of the effects of Coulomb repulsion, which was
ignored in the simple independent electron theories. This model introduces a
repulsion only for two electrons on the same site. They must therefore have opposite
spins. The effects are not limited just to magnetism, but can explain why some
compounds are insulators (so-called Mott insulators) whereas band theory would lead
us to expect a metal [6].

6.3. CRYSTALLINE ELECTRIC FIELD

In metals and metallic compounds based on the transition metals, the elements lose
their valence electrons as they form the conduction band. This leads to a network
of positive charges in a sea of conduction electrons. We saw in section 6.1 that these
electrons are not totally free: they are influenced by the periodic potential of the
metallic ions in the lattice, and its symmetry. As in the localized electron model, the
3d electrons, on a given atom, are in the electric field produced by the charges of
the surrounding ions, with a shielding effect from the other electrons. The spherical
symmetry of the isolated ion is broken, and is replaced by the local symmetry
of the lattice. The orbitals to be considered are no longer the eigenfunctions of the
component to the angular momentum, but linear combinations of them.

For example, in a cubic environment, the d orbitals which were given by
equations (7.29) will now be decomposed into orbitals that are generally termed
eg (x2 – y2, and 3z2 – r2), and t2g (xy, yz, and zx). While these orbitals have the same
energy in a system with spherical symmetry, their degeneracy is broken in a cubic
environment, as shown in figure 8.7. This splitting can be simply explained if we
suppose that the first neighbors of the atom represented in the figure are positive
charges situated on the axes Ox, Oy, and Oz; the eg orbitals with their negatively
charged electronic clouds point in the direction of these positive charges, which
is energetically favorable, while the t2g orbitals do not point towards the positive
charges: this situation corresponds to a state of higher energy.

There is therefore a coupling between the orbitals and the lattice. This effect is referred
to as the crystalline electric field or more simply crystalline field.
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Figure 8.7 - Shapes of the d orbitals (on the left),
and their splitting in a cubic environment (on the right)

In the tight binding approach, this effect is described by the integrals α (see § 5.1).
In the transition metals, this effect is very small. However, in compounds such as
the perovskites, the crystal field can lift the degeneracy completely. We show in
figure 8.8 the example of a copper based perovskite, as is the case in the new
superconducting materials. The symmetry of the perfect perovskite lattice is cubic. In
the superconductors, a crystallographic distortion makes the structure tetragonal, and
breaks the degeneracy of the eg orbitals. The Fermi level in these materials is situated
within the band formed from the x2 – y2 states.

� = 2

x2–y2

3z2–r2

xy

yz, zx

Figure 8.8 - Perovskites based on copper

6.4. MAGNETOCRYSTALLINE ANISOTROPY

The magnetocrystalline anisotropy depends both on the character of the orbitals at the
Fermi level, and on the spin-orbit coupling. In metals, compounds, and alloys of
transition metals, the spin-orbit coupling coefficient λ is always small compared to
the crystal field parameters.

For the metals at the end of the first series, the crystal field is of the order of 1 eV,
while the spin-orbit coupling, described in equation (7.20), is of the order of 0.01 eV.
It can therefore be treated as a perturbation, and the anisotropy constants K1, K2, etc.
can be determined from equations (3.3), and (3.4). One can shows that Kn decreases
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289 K for Gd). This disparity is due to the variation in the magnitude of the magnetic
moment with the different rare earths.

In chapter 20, section 4 we will show that the same long-range interactions are
generally the origin of coupling between magnetic layers in multilayer systems. In
these systems, it is possible to observe the oscillations in the RKKY exchange by
varying the thickness of the non-magnetic layer which separates the two magnetic layers.

3.2. EXCHANGE INTERACTION IN THE 3d METALS

In chapter 8, we saw that, in the transition metals, the magnetic moment arises from a
difference in the occupation of the bands with spin ↑ and ↓, and can therefore have
non-integer values in terms of µB. This band-type magnetic moment appears when
the intra-site Coulomb interaction, which tends to localize the electrons, is sufficiently
large with respect to the kinetic energy of the d electrons. The interactions Umm' and
Jmm', previously defined (chap. 8), then lead to the stabilization of a localised magnetic
moment on each site. This interaction between these moments takes place via overlap
of the 3d wave functions of neighbouring sites (the transfer integrals βij defined in
chap. 8). Notably, the s electrons, also present at the Fermi level, play a negligible
role both in the stabilization of magnetic moments, and in the interaction between
moments, as the polarization of the s band is negligible.

The overlap between wave functions has two contradictory effects: if β >> U and J,
the band will not be magnetic because Stoner’s criterion will not be satisfied, and, if
β << U and J, the intersite exchange interactions will be weak. Figure 9.5 shows how
the interactions vary as a function of U / β. The strongest interactions are obtained for
values of U / β slightly greater than that corresponding to the onset of magnetism.

Figure 9.5 - Qualitative variation
of the interactions between

moments as a function of U / �

The critical value of (U / β)c
corresponds to Stoner’s criterion.

U/β(U/β)c

In
te

ra
ct

io
ns

The sign of the interaction between 3d moments depends, as in the case of rare earths,
on the filling of the band: it is ferromagnetic for a band that is nearly empty (or nearly
full), and antiferromagnetic for a band that is half-filled.

It is possible to discuss very simply the sign of the exchange interaction for the
transition metals. Consider two nearest-neighbor atoms with a small number of
electrons (or holes). The ferromagnetic configuration will be preferred because it
minimises the kinetic energy by permitting the electrons to delocalize from one atom
to another (fig. 9.6), whilst still respecting Hund’s rule. This is the situation in iron,
cobalt, and nickel, where the 3d band is nearly full.
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mL  = 2 –2–101 2 –2–101 Figure 9.6 - Ferromagnetism
in a nearly empty band

If the band is half-filled, the ferromagnetic configuration does not permit the electrons
to be delocalized, as demonstrated in figure 9.7-a. However, the antiferromagnetic
configuration does permit this, as shown in figure 9.7-b , and so it is the preferred
configuration. This is the case for chromium and manganese. The antiferromagnetic
structure in the first is sinusoidal, and in the second collinear.

mL = 2 –2–101 2 –2–101 mL = 2 –2–101 2 –2–101

impossible

(a) (b)

possible

Figure 9.7 - Antiferromagnetism in a half-filled band

The value of the exchange between 3d magnetic moments depends strongly on the
electronic structure. The Curie temperatures of iron and of cobalt are very high
(respectively 1,043 and 1,388 K) but, in the compounds close to Stoner’s instability,
they are far lower, e.g. 6 K for Sc3In.

3.3. DOUBLE EXCHANGE [7]

In the transition metal oxides, we have seen that the exchange interaction is of the
superexchange type. This is only true for the interactions between ions that are in a
definite valence state.

In certain oxides, the transition ion can feature two valence states depending on the
doping: for example this is the case in the substitutional series La1–xCaxMnO3 or
La1–xSrxMnO3, in which the fraction (1 – x) of Mn ions is in the configuration Mn3+

with a total spin S = 2, while the remainder of the Mn ions have the configuration
Mn4+ (S = 3/2). Hybridization with the intermediate p orbitals of the O2– ion in these
manganites results in a ferromagnetic interaction between the Mn3+ and Mn4+ ions,
called double exchange, as shown in figure 9.8. The ferromagnetic configuration (a)
is stabilized by the reduction in the kinetic energy of the additional electron resulting
from the delocalization associated with the hybridization.

Mn3+ O2– Mn4+ Mn3+ O2– Mn4+

(a) (b)

Figure 9.8 - Following Hund’s rule, the extra electron of the Mn3+ ion
can delocalize onto the site of a neighbouring Mn4+ only if the spins

are parallel [configuration (a)]. In the case of configuration (b),
the extra electron remains localized on the Mn3+
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These same procedures can lead to the four state functions: U (S, B//), F (T, B//),
U (S, H) and F (T, H). Their respective differentials are written:

dU S B TdS d dV, //( ) = + ∫ H B// (10.12)

dF T B SdT d dV, //( ) = − + ∫ H B// (10.13)

dU S H TdS B dHdV, //( ) = − ∫ (10.14)

dF T H SdT B dHdV, //( ) = − − ∫ (10.15)

3. MAXWELL RELATIONS AND INEQUALITIES

The eight functions defined above provide, via the Maxwell relations which generalise
equation (10.4), physically useful expressions for the heat involved, or the variation in
temperature, associated with the application of a magnetic field. Thus, the iso-entropic
change in temperature can be described in terms of a magnetothermal coefficient,
which can be deduced from equation (10.9) associated with U(S, H0):
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because (∂T / ∂S)H0 = T / CH0, where CH0 = T(∂S / ∂T)H0 is the heat capacity at
constant applied field*. The determination of the finite change ∆T due to a finite
change in applied magnetic field requires the use of an integration, and in the low-
temperature regime it is definitely necessary to take into account the significant
variation in CH0

 with magnetic field. This is in particular true for the most famous use
of this technique: cooling by adiabatic suppression of the applied field, a technique
(slightly improperly) called adiabatic demagnetization, which will be treated in an
exercise at the end of chapter 11.

These relations lead to economy both in the concepts and in experiment. For example,
relation (10.16) allows us to replace calorimetric measurements by isothermal
magnetization measurements (see exercises).

In the same way that we have encountered, when dealing with the thermodynamics
of simple systems, inequalities between the specific heats (Cp > CV), we obtain
inequalities between the coefficients that describe magnetic responses. In particular,
(∂B / ∂H)T and (∂B / ∂H)S, the isothermal and iso-entropic magnetic permeabilities
µ0µrT

 and µ0µrS respectively, are always positive, with µrT
 > µrS

.

If we also use this approach for the other pair of variables used, H0 and M or m, it
appears to lead to the relation (∂M / ∂H0)S or T > 0. The fact that this relation is

* Not to be confused with the field coefficients of a coil (see Eq. 2.16).
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2. THE MAGNETOCALORIC EFFECT

The reversible heating of para- or ferromagnetic substances which occurs during the
ordering of the magnetic moments is known as the magnetocaloric effect. It is the
inverse of the effect we just discussed: unlike an increase in temperature, an increase
in the magnetic field strength reduces the disorder of the magnetic moments. If
the magnetization process is performed in an adiabatic way, that is without heat
exchange, the total entropy of the substance will remain constant: the ordering of
the magnetic moments will be compensated for by a greater disorder in the atomic
arrangement. This corresponds to an increase in temperature, heating by adiabatic
magnetization.

Conversely, if a substance is magnetised at a given temperature, and then thermally
isolated, the adiabatic demagnetization of this substance will cause its temperature to
decrease: this is known as cooling by adiabatic demagnetization, and, in theory,
allows the attainment of very low temperatures.

A simple description of this effect may be given in the framework of the molecular
field theory. The variation in energy ∆Eex which accompanies the application of a
magnetic field H is again given by equation (11.2), but this time ∆M is the variation
in magnetization created by H, and the work of the magnetic field H necessary to
bring about this variation in magnetization is:

∆W  =  µ0 H ∆M (11.4)

The heat which is produced by this process will be equal to the difference between the
work done by the field and the variation in exchange energy:

∆Q  =  µ0 (H + w M) ∆M (11.5)

where w M is the molecular field. For temperatures above the Curie temperature,
equations (4.50) and (4.51) allow us to write the molecular field as:

wM  =  H TC / (T – TC) (11.6)

which finally gives us the heat generated by magnetization reversal in the
paramagnetic regime:

∆Q = 1
2

µ 0

w
T TC

T – TC( )2
∆ H 2( ) (11.7)

This generated heat will therefore raise the temperature of the sample by a
proportional quantity, ∆T = ∆Q / CM. This is the magnetocaloric effect. CM is the
specific heat at constant magnetization, and T is the initial temperature of the sample,
in the absence of a magnetic field. Indeed, P. Weiss and R. Forrer observed, and
precisely measured this heating in nickel; some of their results are reproduced in
figure 11.2, which clearly shows that, above TC, the heating varies as the square of
the magnetic field, and decreases rapidly with temperature.
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where j is the current density in the wire and H// is the magnetic field applied along
the axis of the sample, provided the magnetic field due to j remains small with respect
to H//.

Figure 12.26 shows the elegant experiment performed in 1919 by Pidgeon
on an annealed nicked wire, 1 mm in diameter, submitted to a magnetic field
H// = 22.3 kA . m –1.

The twist is described by equation ξ = – 6.74 × 10 –5 – 2.40 × 10 –9 j (rad . m –1) if the
current density j is expressed in A . m –2. This yields for the magnetostriction
coefficient λs the value –35.7 × 10 –6, in excellent agreement with the most recent
results (λs = –36 × 10 –6). This effect was also used to determine the magnetostriction
coefficient for amorphous metallic ribbons: formula (12.31) also applies in this case.
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Figure 12.26 - Wiedemann effect
for a nickel wire [19]

The twist ξ, expressed in arcseconds
per centimetre, varies linearly with
the current density.

6. INVERSE MAGNETOELASTIC EFFECTS

AND THE �E EFFECT

After describing the direct magnetoelastic effects, we now show how the magnetic
properties of a material can be altered through the application of mechanical stresses.

6.1. EFFECT OF HYDROSTATIC PRESSURE ON A MAGNETIC MATERIAL

Hydrostatic pressure is isotropic, hence it cannot lower the symmetry of a material. It
will therefore change only the value of the Curie temperature and of the magnetic
moment. Since the latter can be anisotropic in a material with uniaxial symmetry, the
variation in moment under hydrostatic pressure can be different along the c axis and
in the basal plane for such materials.

The variations in Curie temperature under pressure are usually small, except for
materials featuring the Invar effect (∂TC / ∂P = – 35 K . GPa 

–1 for Fe64Ni36 and
– 24 K . GPa 

–1 for the amorphous alloy Fe80B20) [20]. There exist fewer data on the
pressure variations of magnetic moments, because these are difficult measurements.
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Thermodynamic relations have been established between forced magnetostriction, the
pressure variation of magnetic moment, and the pressure variation of TC as expressed
by the logarithmic derivative Γ = ∂ln(TC) / ∂ln(V). Thus [17]:

µ0 (∂m / ∂p)  =  – (∂V / ∂H)  =  – V (∂λα,0 / ∂H) (12.32)
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where m = M(T) / M(0) is the reduced magnetization at temperature T, and m the
magnetic moment associated to volume V of magnetised material; cα is c11 + 2 c12

and αT is the linear thermal expansion coefficient. The first relation shows that
forced volume magnetostriction is proportional to the pressure variation of magnetic
moment. The second relation shows that it features a maximum around TC (where
∂m / ∂T becomes strongly negative), this maximum being the sharper the larger is Γ:
Γ is less than one in most materials, it is 5 for the amorphous alloy Fe80B20 and 17
for the crystallised alloy Fe64Ni36 (Invar®).

6.2. EFFECT OF A UNIAXIAL STRESS
ON THE MAGNETIZATION CURVE

We now discuss an essential effect, which has a strong influence on the performance
of magnetic materials and has often been used to make sensors. A uniaxial stress
deforms the material and this generates a magnetic anisotropy proportional to the
strain and alters the magnetic permeability. Understanding the mechanism of this
stress-induced anisotropy is essential for mastering its effects.

6.2.1. Material with cubic symmetry

The anisotropic part of the magnetoelastic coupling energy (12.10) can be rewritten,
taking (12.16) into account, in the form:

E mel =

− − +







 − +







 + −( ) −( )













λ σ α α α γ γ γ α α γ γγ ,2 3
2 1

2
2

2

3
2 1

2
2

2

1
2

2
2

1
2

2
22

3 2 2
1
2

– 2 λε,2 cε (εyzα2α3 + εzxα3α1 + εxyα1α2) (12.34)

We saw in section 3 that the formalism used here diagonalises Hooke’s law, which
results in a linear relationship between stress (σ) and strain (ε):
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cε εyz  =  σyz cε εzx  =  σzx cε εxy  =  σxy
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Figure 13.5 - Schematic representation
of the Kerr effect in a classical approach

This shows the effect of a thin slab of
magnetic material. The contributions – e E
and – e v ×  B to the acceleration of the
electrons would lead to a resulting
acceleration � that is not colinear to E.
The contribution from this slice to the
wave radiated at large distance will
therefore not be colinear to E either. This
figure does not include the effect of the
propagation time.

Thus the radiated wave will not be polarised along the x direction. In other words,
rectilinear polarization along x or y is not an eigenmode for propagation in the
material in the presence of B. Formal analysis shows that the eigenmodes which
propagate without being altered in the material in the presence of B are the left- and
right-hand circular polarizations L and R. Well-defined refractive indices, nL and nR,
are associated with these eigenmodes.

When absorption is taken into account, the refractive index for the material and ε both
are complex, even in the absence of magnetic field. The same is true for the non-
diagonal terms of the permittivity tensor in the presence of B.

These are the two ingredients of the Faraday effect. The difference between the
imaginary parts of the non-diagonal terms in �’ leads to the right-hand component ER

and the left-hand component EL having a phase difference 2π  d (nL – nR) / λ0,
after travelling the same distance d, with λ0 the wavelength in vacuum (circular
birefringence). Their sum E’ will thus, in the absence of absorption, be a rectilinear
vibration rotated by an angle θF proportional to d (fig. 13.6).

B

EL

ELER

E1

ER

E0

Figure 13.6 - The rotation associated with the Faraday effect is due
to the difference in velocity of the right-hand ER vibration

and left-hand vibration EL, hence of the indices nR and nL

The electric field vectors are shown before (E0) and after (E1) going through the
magnetic sample. The arrows ER and EL in each group correspond to the same
point and the same time, and the amplitudes of ER and EL correspond to their
superposition, at the same points. Rotation of the polarization of light is due to the
velocity for EL being larger.
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Figure 14.11 - Shubnikov-de Haas effect in Mg, from ref. [36]

5.2. THE QUANTUM HALL EFFECT

This effect (QHE) was discovered in 1980 by K. von Klitzing et al. [37]. It appears at
very low temperatures for a layer of electrons confined to two dimensions (at the
junction between two semiconductors). Unlike the preceding case, there is no z
degree of freedom (kz = 0 in eq. 14.13). In contrast to the classical Hall effect, the
Hall voltage increases in steps as a function of field; these steps correspond to a
reduction or even cancellation of the longitudinal resistivity [35, 38]. Each plateau
of the Hall conductance corresponds to a multiple (integral QHE) or sub-multiple
(fractional QHE) of the conductance quantum e2 / h, independently of the nature of
the sample under consideration: ρH = h / νe2. The values of the resistance plateaus
are the same, to better than 10 –7, as the calculated theoretical values. This has allowed
a new standard of resistance to be defined: the ratio (h / e2), or the klitzing, is
25,812.8 ohms.

What do these steps correspond to? The Hall resistivity represents the ratio of the
field to the electronic density: ρH = B / ne. The flux in the sample being a multiple of
the elementary flux quantum Φ0, the steps appear for definite values, integral or
fractional, of the filling factor, the ratio between the number of electrons and the
number of flux quanta. The integral QHE corresponds to the occupation of an integral
number of Landau levels. The existence of a gap in the excitation spectrum makes the
electron gas incompressible. More generally, the repulsive interactions between
electrons stabilise a new type of quantum fluid, where the electrons are linked to the
flux quanta. The phenomenon can thus be interpreted as a condensation of fermions,
under the influence of an intense field, into bosons subjected to a reduced field [39].
This condensation into bosons explains the cancellation of the longitudinal resistance,
and has analogies with superconductivity.




