
CHAPTER 6

STELLAR DYNAMOS

Steven Tobias & Nigel Weiss

6.1. STELLAR MAGNETIC ACTIVITY

Stars that are magnetically active owe this activity to a combination of turbulent con-
vection and rotation. In this review we shall focus on stars like the Sun, which lie
on the main sequence and are sufficiently cool that hydrogen becomes ionised be-
low their surfaces, resulting in the presence of a deep outer convection zone. Their
magnetic fields can be measured directly through the Zeeman broadening of spectral
lines, or inferred from proxy evidence. This is provided by coronal X–ray emission,
by H and K emission from singly ionised Ca+, by photometric variability (associ-
ated with starspots) or by optical and radio flares – all of which are known to be
associated with magnetic activity on the Sun (Tayler, 1997). The Sun is unique,
however, in that we can observe detailed magnetic structures on its surface, and we
have records of its activity extending back through many centuries; its internal struc-
ture is also well-established (see Figure 6.1). On the other hand, the Sun is a single
star whose large-scale properties evolve extremely slowly. So it is only through ex-
ploiting the solar-stellar connection and examining the magnetic properties of other
stars that we can understand how magnetic activity depends on such key parameters
as rotation (Wilson, 1994; Mestel, 1999; Schrijver & Zwaan, 2000).

Chromospheric Ca+ emission has been measured for a large number of nearby stars,
revealing a wide range of activity (Vaughan & Preston, 1980; Soderblom, 1985;
Henry et al., 1996). Comparison of middle-aged stars like the Sun with similar stars
in young clusters shows that magnetic activity declines with age. Moreover, there
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Figure 6.1 - Internal structure of the Sun. The cutaway image shows the visible
surface (the photosphere, with a radius R! ≈ 700 Mm), together with an outer
region where energy is carried mainly by convection, and an inner region where
energy is transported by radiation. The narrow interface between the convection
zone and the radiative zone, at a radius of approximately 0.7R!, has a thickness of
only 0.02R! and is the site of the tachocline, where there is a strong radial gradient
in angular velocity. The temperature rises from 6000 K at the surface to about 2 ×
106 K at the base of the convection zone and then to 1.5 × 107 K in the central core,
where energy is generated by thermonuclear fusion. (See colour insert.)

is a strong correlation between activity and rotation (Noyes et al., 1984; Baliunas
& Vaughan, 1985; Saar & Brandenburg, 1999). When stars first arrive on the main
sequence and begin to burn hydrogen they are spinning rapidly (Soderblom, Jones &
Fischer, 2001), with rotation periods of order a day, but they gradually lose angular
momentum to magnetic braking owing (Mestel, 1999) and spin down. It is only
in slowly rotating middle-aged stars like the Sun (with rotation periods of order a
month) that cyclic activity is found (Baliunas et al., 1995). The cycle periods are all
around 10 years: Figure 6.2 shows the time-dependent Ca+ emission in a solar-type
star, exhibiting cyclic variation with a period of 8.2 yr.

The Sun’s own magnetic activity varies cyclically, with an average period of about
11 years (Stix, 2002). The most dramatic manifestation of this activity is in sunspots,
which are dark because they are the sites of strong magnetic fields that locally inhibit
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Figure 6.2 - Cyclic activity in a star. Chromospheric Ca+ emission as a function of
time for the K0 star HD 81809 (Mount Wilson Observatory H-K Project).

convection. The cyclic variation of the incidence of sunspots is demonstrated by the
well-known butterfly diagram in Figure 6.3. Spots typically appear in pairs with
opposite polarity, oriented nearly parallel to the equator. The spots are contained
within active regions, which are formed by the emergence of almost azimuthal (or
toroidal) magnetic flux, whose orientation obeys Hale’s laws. The polarities of lead-
ing and following spots are consistent in each hemisphere but antisymmetric about
the equator; and these polarities reverse from one activity cycle to the next. Hence
the magnetic cycle has a period of 22 years. The axis of a sunspot group or active
region is actually inclined at a small angle so that leading spots are closer to the
equator, and this angle increases systematically with latitude (Joy’s law). This re-
sult, with the large horizontal scale of active regions, suggests that the emerging flux
is deep-seated and not a merely superficial phenomenon.

The arguments for ascribing the origin of these magnetic fields to a dynamo are
different from those for planetary dynamos. Whereas the Earth’s magnetic field has
to be maintained by a geodynamo, since it has been present for billions of years
despite an Ohmic decay time of only 104 yr, the solar problem is to explain how the
field reverses every 11 years when the decay time is 109–1010 yr. It has been claimed
that cyclic behaviour could be driven by an oscillator, with a steady poloidal field and
alternating shears in differential rotation, though no mechanism for producing such
shears has been suggested. In fact, the Sun possesses a large-scale poloidal field that
is most prominent in polar regions and has dipole symmetry, and this field reverses
near sunspot maximum (i.e. 90◦ out of phase with the activity cycle). Furthermore,
the only observed fluctuations in angular velocity have a period of 11 years, not
22 years, and an 11-yr periodicity is precisely what is expected from a nonlinear
dynamo, since the Lorentz force is quadratic in the magnetic field. We may therefore
assume that this cyclic solar activity is maintained by a large-scale homogeneous
dynamo, which generates systematic fields (magnetic climate) as opposed to the
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Figure 6.3 - Cyclic activity in the Sun (1874–2004). (a) butterfly diagram, showing
the incidence of sunspots as a function of latitude and time; new spots appear at
±30◦ as the old cycle dies away at the equator. (b) area covered by sunspots as a
function of time (courtesy of D.H. Hathaway).

small-scale disordered fields (magnetic weather) which could be produced by local
dynamo action near the photosphere.

The current state of solar dynamo theory forces most of our discussion to be physical
rather than mathematical, backed up by numerical rather than by analytical results.
In the next two sections we introduce mean field (αω) dynamos for the solar cy-
cle. Then, in Section 6.4, we focus on dynamos located at the interface between
the convective and radiative zones, where the radial shear is greatest. Long-term
modulation of cyclic activity is the subject of Section 6.5. Next, in Section 6.6, we
consider the enhanced activity in rapidly rotating stars and go on to comment briefly
on dynamos in protostellar accretion discs. Finally, we summarise future prospects
for stellar dynamo theory. Many of these issues have already been discussed in
various recent reviews (e.g. Stix, 1991; Weiss, 1994; Rosner, 2000; Tobias, 2002a;
Choudhuri, 2003; Ossendrijver, 2003, Rüdiger & Arlt, 2003).

6.2. LINEAR αω–DYNAMOS

FOR THE SOLAR CYCLE

A proper treatment of the solar dynamo would require an accurate simulation of
the nonlinear interactions between rotation, convection and magnetic fields. Direct
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numerical simulation of these processes in a regime where the magnetic Reynolds
number Rm ≈ 109 remains beyond the capacity of the largest computers and, in any
case, the key physical mechanisms of differential rotation, helicity and magnetic
buoyancy are not adequately understood. Apart from some early brave attempts
(Gilman, 1983; Glatzmaier, 1985), stellar dynamo theory has had to rely on the
mean field approximation (discussed in Section 1.5).

Since differential rotation is so effective at creating toroidal fields, nearly all stellar
models are axisymmetric αω–dynamos. Then the poloidal field BP = ∇ × (Aeφ)
and the toroidal field BT = Bφeφ satisfy the linear equations

∂tA = αBφ + ηD2A , ∂tBφ = r sin θBP · ∇ω + ηD2Bφ , (6.1a,b)

referred to spherical polar co-ordinates, where ω is the local angular velocity, η here
denotes the total (laminar plus turbulent) diffusivity and D2 = ∆− 1/r2 sin2 θ.

6.2.1. DYNAMO WAVES

Parker (1955, 1979) provided the simplest (and earliest) example of a mean field
dynamo. He considered a Cartesian model with A, B ∝ exp(i k x), where the x–
direction corresponds to increasing θ and U(z) represents the sheared zonal velocity
with z corresponding to a local radial co-ordinate. He showed that there was ex-
ponential growth when the dynamo number (see Section 1.5.3), D = αU ′/(2η2k3),
was greater in magnitude than unity (prime is used to note a derivative, i.e. U ′ =
dU(z)/dz). The waves travel “equatorward” if D < 0. This result from a relatively
simple model has had a profound effect on stellar dynamo theory; it is now widely
claimed that dynamo waves always travel poleward if D > 0. However this is not
always the case (although often true) and some solar dynamo models are able to re-
produce equator-propagating magnetic fields even for D > 0. This result can readily
be extended to other geometries and, more generally, the waves travel along surfaces
of constant ω.

It is important to realise that the local behaviour of travelling waves with periodic
boundary conditions may differ qualitatively from the global behaviour of solutions
that are spatially confined, whether in Cartesian or in spherical geometry. For linear
theory, this corresponds to the difference between convective and absolute instability
(Tobias et al., 1998b). For waves of frequency ω and wavenumber k, governed by
the dispersion relation

ω(k; D) ≡ 0 , (6.2)

instability in an infinite (or periodic) domain occurs at the smallest value of D that
satisfies the dispersion relation for some real k. It is possible therefore to generate a
marginal curve of Dcrit versus k (Worledge et al., 1997). In a finite domain of length
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Table IV - Some orders of magnitude for the solar dynamo.

Solar radius R! 6.96 × 108 m
Solar mass M! 1.99 × 1030 kg
Surface temperature 5780 K
Central temperature 15.6 × 106 K
Surface density 2.0 × 10−4 kg m−3

Central density 1.5 × 105 kg m−3

Solar age 4.57 × 109 yr
Large scale magnetic field strength 5 × 104 nT (0.5 G)
Diameter of surface granulation L 106 m
Sunspot magnetic field strength 0.3 T (3000 G)
Rotation time at equator 25 d
Rotation time at 60o latitude 29 d

Ekman number, base of the c.z. E ν/ΩR2
! O(10−15)

photosphere O(10−17)
Rossby number, base of the c.z. Ro |u|/ΩR! O(10−2)

photosphere |u|/ΩL O(103)
Prandtl number, base of the c.z. Pr ν/κ O(10−6)

photosphere O(10−13)
Magnetic Prandtl number, base of the c.z. Pm ν/η O(10−1)

photosphere O(10−7)
Reynolds number, base of the c.z. Re |u|R!/ν O(1013)

photosphere |u|L/ν O(1013)
Magnetic Reynolds number, base of the c.z. Rm |u|R!/η O(1011)

photosphere |u|L/η O(106)

L, instability of a global mode is governed by a more stringent condition. In the
limit L → ∞, this condition approaches that for absolute instability of a periodic
wavetrain; that is both (6.2) and the condition ∂ω/∂k = 0 must be satisfied simulta-
neously. This can only be achieved if k is allowed to be complex (see Kuzanyan &
Sokoloff, 1995). It has its origins in the development of the Maximally–Efficient–
Generation Approach (MEGA, see Ruzmaikin et al., 1990), as explained in detail
in the Appendix of Bassom et al. (2005). The two criteria for periodic and finite
domains yield very different critical dynamo numbers and frequencies. Moreover,
nonlinear behaviour can be qualitatively affected (Tobias 1998), with the frequency
in the nonlinear regime being determined by the interaction of the global mode with
the boundaries, and the possible presence of secondary absolute instabilities.
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6.2.2. SPHERICAL MODELS

The spherical problem possesses two important symmetries with respect to reflec-
tion about the equator. The governing equations (6.1a,b), with appropriate boundary
conditions and suitable constraints on α and ω, are invariant under the transforma-
tions

d : (θ, t) → (π − θ, t), (A, B) → (A, −B) (6.3a)

and

q : (θ, t) → (π − θ, t), (A, B) → (−A, B) . (6.3b)

These symmetries generate an abelian group (D2) with four elements, including
i = dq : (θ, t) → (θ, t), (A, B) → (−A, −B) and the identity (Jennings &
Weiss, 1991). The trivial solution A = B = 0 possesses the full D2 symmetry,
which is broken at the initial Hopf or pitchfork bifurcation. The linear problem then
allows two distinct families of eigenfunctions, with different symmetries about the
equator. For dipole solutions, with the symmetry d, the toroidal field B is antisym-
metric about the equator, while A is symmetric; for quadrupole solutions, with the
symmetry q, A is antisymmetric and B is symmetric. If an appropriate dynamo
number is defined by setting D = αω′R4

!/η2, where R! is the solar radius, then the
critical values of D at which dipolar and quadrupolar modes become unstable differ
only slightly. Provided that D < 0 in the northern hemisphere, oscillatory dipole
modes are marginally favoured and the pattern drifts equatorward. Thus it is easy to
construct butterfly diagrams that are qualitatively similar to that in Figure 6.3 (Steen-
beck & Krause, 1969; Stix, 1976, 2002). Note that the symmetry of one or other
of these solutions can only be broken at a subsequent bifurcation in the nonlinear
domain. If this happens at a pitchfork bifurcation, further symmetries of periodic
solutions can be classified (Jennings & Weiss, 1991) but symmetry–breaking more
commonly involves a Hopf bifurcation that leads to quasiperiodic behaviour.

6.2.3. THE ω–EFFECT

It has long been known that the angular velocity varies with latitude at the surface of
the Sun: the equatorial regions rotate distinctly more rapidly (with a sidereal period
of 25 days) than the poles (with a period of about 35 days). More recently, one of
the triumphs of helioseismology has been the determination of the Sun’s internal ro-
tation (Thompson et al., 2003). Measurements of p–mode frequencies have revealed
that there is very little radial shear in the convection zone, where ω ≈ ω(θ), while
ω is nearly uniform in the radiative interior. Between the two is a thin layer (with
thickness around 0.02R!) with a very strong radial shear, the tachocline. This ob-
served pattern of differential rotation is displayed in Figure 6.4; since the radiative
core rotates at an intermediate rate, ∂ω/∂r changes sign at a latitude around 30◦ .
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Figure 6.4 - Differential rotation in the solar interior. The rotation rate is approxi-
mately constant along radii in the convection zone, whose base is indicated by the
dashed line. A frequency of 450 nHz corresponds to a period of about 26 days
(courtesy of J. Christensen-Dalsgaard). (See colour insert.)

The dynamics within the tachocline is not yet understood (Tobias, 2004) but it is
generally accepted that strong toroidal fields are generated and stored within this
region of shear.

6.2.4. THE α–EFFECT

The source of the α–effect is much less clear. The earliest treatments assumed that
poloidal fields were regenerated by cyclonic eddies that were distributed through-
out the convection zone and that α (which is antisymmetric about the equator) re-
verses its sign in such a way that D < 0 at the base of the convection zone in the
northern hemisphere (Parker, 1979; Krause & Rädler, 1980). Some recent authors
have revived a surface flux-transport model due originally to Babcock (1961) and
to Leighton (1967), in which the α–effect is ascribed to the decay, through turbu-
lent diffusion, of active regions whose orientation is determined by Joy’s law. The
opposing fields of leading spots cancel out as they approach the equator, while the
trailing fields of following spots spread polewards and eventually reverse the po-
lar fields at sunspot maximum. In that case, the amplitude of the activity cycle
should determine the strength of the high-latitude poloidal field at the next sunspot
minimum. This can be checked by studying the incidence of recurrent geomagnetic
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activity, caused by high-speed streams emerging from coronal holes. Detailed inves-
tigations show that the toroidal fields at sunspot maximum are more closely related
to the mid-latitude poloidal fields that precede them than to those that follow after-
wards (Simon & Legrand 1986; Hathaway, Wilson & Reichmann 1999; Ruzmaikin
& Feynman 2001). This evidence implies that flux transport is only a superficial
process.

The dynamo is obviously more efficient if the α–effect is located near the base of
the convection zone, where the ω–effect is strong. Indeed, Mason, Hughes & To-
bias (2002) have shown that the influence of a surface source in generating dynamo
waves is swamped by that of a much weaker α near the tachocline. There are several
buoyancy-driven mechanisms that might provide the latter. These include magne-
tostrophic waves (Moffatt, 1978; Schmitt, 1987), instabilities of flux tubes (Ferriz-
Mas, Schmitt & Schüssler, 1994; Ossendrijver, 2000b) and instabilities driven by
magnetic buoyancy (Brandenburg & Schmitt, 1998; Thelen, 2000a, b), These last
have been studied in considerable detail (see Hughes & Proctor, 1988; Tobias, 2004)
in both the linear and nonlinear (Matthews, Hughes & Proctor, 1995; Wissink et al.,
2000) regimes, and their interactions with rotational shear have also been explored
(Cally, 2000; Hughes & Tobias, 2001; Cline, Brummell & Cattaneo, 2003; Tobias
& Hughes, 2004). Another possible source of kinetic helicity arises from MHD
instabilities associated with differential rotation within the tachocline, which have
been studied and classified (e.g. Gilman & Fox 1999; Cally, 2001, 2003; Gilman &
Dikpati, 2002; see Tobias, 2004 for a review).

These instabilities are joint instabilities of the strong toroidal field and latitudinal
differential rotation just below the base of the solar convection zone. The global
mode associated with the instability is known to possess non-zero kinetic helicity
which may be related to the α–effect. However, this connection can only be reliably
achieved in a small Rm analysis and for high Rm a straightforward association
between kinetic helicity and α–effect is not possible (see Courvoisier, Hughes &
Tobias, 2006).

One feature of these instabilities is that they are triggered by a finite-amplitude
toroidal field, which itself has to be built up by dynamo action following a super-
critical bifurcation; once the buoyancy driven instabilities set in the dynamo can
become much more efficient. Thus the branch of nonlinear dynamo solutions may
have two turning points, with an intermediate segment of unstable solutions, leading
to subcritical behaviour and hysteresis (Ossendrijver, 2000b; cf. Figure 3 of Weiss
& Tobias, 2000).
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Figure 6.5 - Downward pumping of magnetic flux. Results for a horizontal field,
initially in the y–direction and confined to a thin sheet, in a strongly stratified layer.
(a) The field 〈By〉, averaged horizontally and over time, as a function of depth in a
vigorously convecting layer (courtesy of N.H. Brummell). (b) Evolution with time
of 〈By〉 when the convecting layer lies above a layer that is strongly stably stratified;
magnetic flux is expelled into the stable region (after Tobias et al., 2001).

6.2.5. MAGNETIC PUMPING

In addition to producing turbulent diffusion and regenerating large-scale fields by the
α–effect, turbulent motion can also lead to net transport of magnetic fields. In mean
field electrodynamics this is represented by the antisymmetric part of the α–effect
(αa

ij = εijkγk). Physically, this corresponds to flux expulsion down the gradient of
turbulent intensity and γ can be calculated and interpreted as a pumping velocity
(Krause & Rädler 1980; Zeldovich, Ruzmaikin & Sokoloff, 1983; Moffatt, 1983).
In Boussinesq convection, with up-down symmetry flux is expelled equally towards
the top and bottom of the convecting layer. In a stratified layer, however, there is a
preferred direction which leads to a net downward transport of magnetic flux. Two
distinct mechanisms are involved. For mildly nonlinear convection there are isolated
gentle upflows enclosed by a coherent network of downflows and this pattern can
give rise to topological pumping (Drobyshevski & Yuferev, 1974). In turbulent
convection the sinking network is focused into rapidly descending plumes and this
pattern leads to a net downward transport (Weiss, Thomas, Brummell & Tobias,
2004), as illustrated in Figure 6.5a. This process becomes much more effective when
there is a stably stratified region beneath the convectively unstable layer as shown
in Figure 6.5b (Tobias et al., 1998a, 2001; Dorch & Nordlund 2001). It follows that
any large-scale fields within the convection zone will tend to be pumped downwards
and into the stably stratified tachocline, where they can accumulate within an even
thinner shell that is penetrated by overshooting convection.


