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Proof — Replacing 2 by €’ and taking Proposition 3.1 into account, one resumes the

proof of Theorem V-3.1. |

Remark 3.2 — Reasoning as in the proof of Theorem V-2.1, one can show that
the interpolating and smoothing D™ -splines over ' relative to p belong to the space
C?m=n=1=1(Q)'). Therefore, in particular, ¢ and ¢, belong to C1(Q') if m =2, n =2
and g =0, and to C*(Q)if m =3, n=2and p=1. O

Remark 3.3 — Suppose, in this section, that X is a set of linear forms either of type
v+ v(a), with a € Q, or of types (3.1) or (3.2), with |a| = 1. Replace H™(Q') by the
space V = H™(Q') N C°(Q). Then, taking Theorem 2.4 into account, one defines in
the same way the V-interpolating (resp. V-smoothing) D™-spline relative to p and 3
(resp. p, B and ). O

4. DISCRETE D™ -SPLINES

In order to simplify the exposition, we suppose from now on that Q is a polyhedral
subset of R™ (this assumption is verified in the applications). On the other hand, we
suppose that the closure of the discontinuity set F' is a finite union of (closed) faces
of polyhedrons in R”, that m is any positive integer and we denote by &k an integer
equal to 1 or 2. We write Q' = Q \ F, we keep the notations A, ¥, g, N and p of
Section 3 and we suppose that (3.4) is verified.

Let H be a bounded subset of (0, +00) such that 0 € H. For any h € H, suppose we
are given

e a triangulation 7, of Q by means of n-simplices K with diameters hg < h and
V]

pairwise disjoint interiors K, such that

VK €Ty, KNF=0, (4.1)
any face of a n-simplex K € 7 is either the face of another n-
simplex in 7y, or a part of 9, or a part of F (4.2)
(cf. Figure 2),
e a finite element space V},, constructed on 7}, such that
Vj, is a finite-dimensional subspace of H™ (') N CH (). (4.3)

Remark 4.1 — Let &’ be the class of the generic finite element of the space Vj.
Then, hypothesis (4.3) implies that & < &’ and that m < k' +1, so that the inclusions
Vi C CR(Q) and Vi, € H™ (), respectively, are obtained. When dealing with real
problems, one takes k' = k, for reasons of cost.

For the problem of approximating surfaces from Lagrange or first order Hermite data,
we have n = 2 and so, taking account of hypothesis (5.2), needed in study of the
convergence, the usual choices are ¥’ =1 and m=2,if k=1, and ¥’ =2 and m = 3,
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Figure 2: Example of triangulation of the set Q.

if k = 2 (see Section VIII-2). Notice that we must use triangular finite elements,
because F' may be any polygonal set. For examples of generic finite elements, the
reader is referred to Section VIII-3. |

Remark 4.2 — Let us detail how to obtain a finite element space V} satisfying
(4.3). In a first step, one follows the usual process in the Finite Element Method,
without taking F' into account, in order to construct a finite element space V;* such
that V> C H™(Q) N C*(Q). Let wi,...,w};. be the basis functions of V;*. For
i=1,...,M* let b; € Q be the node with which w} is associated and let 7; be
the number of connected components of (supp w}) \ F, whose respective closures are
denoted by U}, ..., U (cf. Figure 3). It is obvious that 4; > 1 only if b; belongs to

F (it may happen, however, that v; = 1 for some nodes b; € 9Q N F).
Now,let W = {w] xyi |i=1,...,M*, j=1,...,% }, where x;;; is the characteristic

function of UZ] It is clear that W is a finite family of linearly independent functions of
H™(Q)NCE(Q'). Then, the space V}, is just the linear space spanned by W. Let us
observe that the sets U? are the supports of the functions in W and so the supports

K3

of the basis functions of V. O

According to (4.3) and since p < k, we can define on V},, for any h € H, the mapping
[ Im, o, introduced in (3.5). It follows from (3.4) that [ - ], o+ is a norm on Vj. Of
course, endowed with this norm, V}, is a Hilbert space, because it 1s finite-dimensional.

Let 3 € RY. For any h € H, we define the vector space
ICOh:{vh eV |pvh IO}
and the affine linear variety

]Chz{thVh|pvh:ﬁ}.
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Figure 3: Example of sets Ul»j associated with three nodes b; (cf. Remark 4.2). Let
us observe that v; = 3 = 1, whereas vy, = 2.

Then we consider the problem: find op solution of

{UhEICh, (4.4)

Yop € K, |0hlm,0 < |vh|m -

Any solution ap, of (4.4), if any exists, is called V},-discrete interpolating D™ -spline
relative to p and 3.

Theorem 4.1 — Suppose that hypotheses (3.4), (4.1), (4.2) and (4.3) are verified.
Moreover, suppose that

VhEH, ¥ C X, (4.5)

where Xy, denotes the set of degrees of freedom of Vi,. Then, for any h € H, problem
(4.4) has a unique solution o, characterized by

{O'h € Ky, (4.6)

Ywp € Kon, (oh, Wh)m,a = 0.

Proof — Let us show that Kp, is nonempty. Let us denote by ¢1, ..., ¢n the elements
of ¥. Let M be the dimension of V}, and let wy, ..., war be the basis functions of
Vi, numbered so that, for any j = 1,..., N, ¢;(w;) = 1 (which, by (4.5), we are
able to do). Then, the function vy = Zj\f:l Bjw; belongs to Kjp. Thus, the closed
convex nonempty subset K, of V3, has a unique element o, of minimal norm [ - ], qr,
characterized by (4.6).
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When (3.3) is verified, it is clear that (4.4) (resp. (4.6)) constitutes a discretization
of (3.6) (resp. (3.7)).

Remark 4.3 — With the notations of the previous proof and under hypothesis (4.5),
the solution op, of (4.4) can be written as

N M
op = E ﬁjw]’ + E oWy,
j=1 F=N+1

with a; € R, for j = N 4+1,..., M. Reasoning as in Remark VI-2.1, we see that the
unknown coefficients a; are the solution of the linear system

M N
Z (wj, wi)m qroj = —Zﬁj(wj,wi)m,nu N+1<i1<M,
j=N+1 ij=1
whose matrix is regular. [l

For any £ > 0 and any h € H, we now consider the problem: find o5 verifying

O:p € Vha (4 7)
Yoy € Vi, Jo(o:en) < Je(vp), .

where J. denotes the functional introduced in (3.10) (let us observe that, indepen-
dently of any condition on m, such as (3.3), J. is defined, in fact, on H™ (') NC%H ()
and hence on V},).

Theorem 4.2 — Under hypotheses (3.4), (4.1), (4.2) and (4.3), for any h €
H, problem (4.7) has a unique solution o.y, called Vj-discrete smoothing D™-spline
relative to p, § and ¢, which is also the unique solution of the problem: find o.p such

that
O-Eh E Vha (4 8)
Yop € Vi, (p0cn, pon) + €(Oen, Ua)m,qr = (5, pun).

Proof — Taking into account that V3, endowed with the norm [ - [ o, is a Hilbert
space, the proof is similar to that of Theorem V-3.1. |

When (3.3) is verified, (4.7) (resp. (4.8)) is clearly a discretization of (3.11) (resp.
(3.12)).

Remark 4.4 — Let us write 0.5 = ijzl ajw;, where wy, ..., wy denote the basis
functions of V3, and let us introduce the matrices

A= <¢i(wj))1§i§N,1SjSM

and

R = ((wj, wi)mvﬂl)lgi,ng'
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Figure 11: Example 3. Surface S.
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Figure 12: Example 3. Surface triangulation T.
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Figure 13: Example 3. Planar triangulation yielded by the shape-preserving parame-
trization method.

Figure 14: Example 3. Set A of parameter points and triangulation Th.
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Figure 15: Example 3. Trace of the restriction to Q of the Xp-discrete smoothing
D?-spline 0., relative to A, P and ¢ = 1075. Relative error: r(S) = 0.00353369.





