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44 F. DE GROOT - J. VOGEL

Table 25 - The T1 final states of the 2p
53d

 1 configuration with 10 Dq = 3.04 eV. The
top row gives the energies of the seven final states that are build from seven basis
vectors. The third row is related to 1P1 character and is given in boldface.

460.828 461.641 462.806 464.048 465.859 468.313 471.369

J = 1 0.0662 0.0037 0.1550 0.0124 0.4916 0.0404 0.2308

J = 1 0.5944 0.0253 0.0007 0.2972 0.0280 0.0078 0.0466

J = 1  1P1 0.0046 a 0.0091 b 0.1128 c 0.0046 d 0.1845 e 0.2666 f 0.4178 g

J = 3 0.0161 0.4460 0.0340 0.0980 0.0097 0.2923 0.1039

J = 3 0.0020 0.2973 0.2980 0.0791 0.0331 0.2191 0.0714

J = 3 0.0044 0.0404 0.3986 0.0116 0.2417 0.1738 0.1294

J = 4 0.3124 0.1781 0.0009 0.4972 0.0113 0.0000 0.0001

Figure 13 shows the crystal field multiplet calculations for the 3d0 ö 2p53d1 tran-
sition in TiIV. The result of each calculation is a set of seven energies with seven
intensities. These seven states are broadened by the lifetime broadening and the
experimental resolution. From a detailed comparison to experiment it turns out to
be the case that each of the four main lines has to be broadened differently. It is
well known that the LII part of the spectrum (i.e. the last two peaks) contains an
additional Auger decay that accounts for a significant broadening with respect to

the LIII part. This effect
has been found to be an
additional broadening of
0.5 eV half-width at half-
maximum (hwhm) [27,28].

Figure 13 - Crystal field multiplet calculations for the 3d
0 Æ 2p

53d
1 transition in Ti4+.

The atomic Slater-Condon parameters and spin-orbit couplings have been used as
given in table 12. The bottom spectrum is the atomic multiplet spectrum. Each next
spectrum has a value of 10 Dq that has been increased by 0.3 eV. The top
spectrum has a crystal field of 3.0 eV.
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3.3. COMPLEX HEDIN-LUNDQVIST EXCHANGE

AND CORRELATION POTENTIAL

We shall not fully develop the formalism of the complex Hedin-Lundqvist
potential and we shall concentrate on its specific importance for the simulation of
X-ray absorption cross-sections. The potential felt by the photoelectron in the
single-electron approach contains a mean part, an exchange part and what is left
receives the name of correlation potential. Expressions for the exchange and
correlation parts have been developed by Hedin and Lundqvist [28] as a by-product
of the calculation of the self-energy of the photoelectron. The self-energy contains
all the interactions of the photoelectron with the other electrons of the medium. It is
a complex function where the real part is the sum of the exchange and correlation
energy and the imaginary part is a damping term representing the inelastic
interactions of the photoelectron with the medium. The medium is simulated by a
dielectric function, usually defined in the plasmon pole approximation and the
interaction of the photoelectron with the medium is expressed as a series of the
screened interaction. Only the first term is computed (this is the so called
GW approximation). When the photoelectron kinetic energy is larger than the
plasmon energy of the valence electrons (that is the plasmon energy associated
with the electronic density in the interstitial region), the photoelectron is
undergoing severe inelastic losses. This corresponds to a sharp increase of the
imaginary part of the photoelectron self-energy. Following a simple model derived
from the WKB procedure, one can relate the imaginary part of the photoelectron
self-energy (�S) in the atomic spheres or in the interstitial region to an estimation
of the photoelectron mean free path lel(E), as a function of the kinetic energy, E, of
the photoelectron.

lel ( )E = h2

2
1k

m �S

One sees (fig. 4) that below the plasmon energy (here it is ª 9 eV, lel(E) is infinite.

If one considers also the finite life time of the core-hole, one can calculate an
effective mean free path for a specific edge. It is given by

l
Geff

tot
= h

( )E
E2

m

with G G G Gtot el exp( ) ( )E = + +h

where Gh is the core-hole width and Gel is the damping function related to the

photoelectron mean free path l Gel el,
el

( )
( )

E
E

E= h
l

2
m

. An eventual Gexp term can
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The challenge in the theoretical development is to describe the final state | f Ú
correctly. This is quite easy for the case of transitions to a localized state within the
multiplet framework, and represents the most important application of XMCD.
More challenging are transitions toward delocalized states (itinerant magnetism).
The former is extensively described in the chapter by J. Vogel and F. de Groot in
this volume. The greatest impact of XMCD in the field of thin film and interfacial
magnetism is given special attention in the chapter by C.M. Schneider. Here, we
limit ourselves to the underlying basis of the XMCD effect and comments on the
theoretical approach of XMCD for the itinerant magnetism case.

2.2. LIGHT POLARIZATION

AND POLARIZATION-DEPENDENT SELECTION RULES

The interaction Hamiltonian depends on the polarization ∂ of the incident electric
field.
®  Linear polarization: The electromagnetic field vector has a constant direction

in a plane perpendicular to the propagation vector.
®  Circular polarization: The electromagnetic field vector rotates around the

propagation vector direction (fig. 1).

The selection rules are polarization-dependent, i.e.,
the difference between the transition probability
for left and right circularly polarized light gives
circular magnetic dichroism:

Figure 1 - Circular polarization: the
electromagnetic field vector turns
around the direction of the
propagation vector. In the figure
the X-rays are left circularly
polarized, the electromagnetic field
turns to the left for an observer
placed at the sample position.

For a left circularly polarized beam propagating along Oz, the expression for the
electric field is

∂
+ =

+e ex yi

2
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Finally the experimental signal is proportional to
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where the degree of circular polarization of the X-ray photons is accounted for by
the factor Pc.

m = –2

d states

p states

LII

LIII

m = –1 m = 0 m = 1 m = 2
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Figure 2 - For an LII edge, Dipole transitions from a J = 1/2 level for photons of
helicity +1 (left polarization, Dml = +1), for linearly polarized photons (Dml = 0)
and for photons of helicity –1 (right polarization, Dml = –1). The p level is split
by spin-orbit coupling interaction. The d level is split by exchange interaction D.

2.3.2. CALCULATION OF PE FOR THE LII AND LIII EDGES: PE(LII) AND PE(LIII)

Due to spin-orbit coupling the 2p band is split into two sub-bands of kinetic
moment j = 1/2 and j = 3/2. This is a final state effect. The two sublevels can be
separated by energy as large as 1000 eV in the case of 5d transition metals or in
rare earths.
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Figure 12 - Fit of the first shell Cu data at room temperature with the first shell Cu
data measured at 77 K.

It is not always possible to separate the different shells by a window function. For
instance, in a bcc metal the first and second neighbour are located at a 3 2/  and at
a. The difference in only 13% and the corresponding shells merge into one. In such
a case a two-shell fit has to be used. Now the question arises how many free
parameter may be determined in a significant way by the fit. The answer is given
by the ratio of the window width DrF and the resolution in Fourier space
(kmax – kmin)–1

N Ffree § -2
p

Dr k k( )max min {44}

For the data in figure 12, DrF = 0.8 Å and kmax – kmin = 15 Å–1, so that Nfree £ 8.
Since not every good-looking fit is a significant fit, equation {44} is an important
criterion in data analysis.

3.5. POSITION AND STRUCTURE OF THE ABSORPTION EDGE

Figure 13 shows the K edge of Cu in three Cu oxides (Cu2O, CuO and KCuO2), in
metallic copper and in a high Tc superconductor YBa2Cu3O6.97. There are distinct
differences in the form and in the position of the edges. It turns out that the position
of the edge is shifted to higher energies with increasing formal valence of the
absorber. Note that m̃ is the absorption coefficient normalized to an edge jump of 1
(for above relative to far below the edge).
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Figure 22 - Temperature-dependent raw (left) and symmetrized spectra of a C60
monolayer on the Ag(100) surface, showing the opening of a gap at EF from ref. [25].

Perfect nesting of the FS, i.e. the possibility of translating the entire FS onto itself
by a translation Dk = QCDW = 2kF, is at the origin of the instability. The degeneracy
of states at the Fermi surface connected by QCDW causes the divergence of the
generalized charge susceptibility c(2kF) and, via electron-phonon coupling, the
spontaneous charge and lattice modulation. Perfect nesting cannot be achieved in
2D or 3D, except for pathological situations, like a square FS. Nevertheless, partial
nesting conditions over a good portion of the FS are often realized in quasi-2D
materials, like the layered transition metal compounds. The ensuing enhancement
of c(2kF) may be sufficient to drive the system into a CDW phase. Unlike the
singular 1D situation, partial nesting removes only part – the nested portion – of
the FS, and the transition is not a metal to insulator, but a metal-to-metal one.

Both 1D and 2D instabilities, and the corresponding changes in electronic states,
have been studied by ARPES. The "geometrically" simpler 1D case presents some
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5.1.2. CONTRAST ENHANCEMENT

In order to separate magnetic and nonmagnetic contributions to the contrast in the
EEM image, one conveniently uses the fact that a reversal of z changes the sign of
the magneto-dichroic signal CM, while leaving the nonmagnetic signal CNM

essentially unaffected, i.e.,

CM (–z)  =  – CM (z)     ;     CNM (–z)  =  CNM (z) {1}

Therefore, by subtracting two images taken at the same photon energy, but
opposite light helicity Iz+ – Iz–, the magnetic contrast CM is enhanced. Summing up
the two images extracts the non-magnetic contrast CNM

CM   ~  Iz+ – Iz–     ;     CNM   ~  Iz+ + Iz– {2}

This way, the images provide both magnetic and nonmagnetic (chemical,
topographical) information. In order to describe the magnetic contrast in a more
quantitative manner, often the asymmetry image A

A =
I – I

I + I
z z

z z

+ -

+ -
{3}

rather than the difference image CM is shown. The quantity asymmetry ranges
between +100% and –100%.

z+ - z-

z+ + z-

z+

z-

z+ - z-
———
z+ + z-

Figure 8 - Magnetic contrast enhancement for the example of permalloy micro-
structures. Feature size is 12 mm. Left - Individual images taken with opposite light
helicity I(z+) and I(z–) at the Ni LIII edge are first subtracted and summed (center),
respectively. Right - The sum and difference images are finally used to calculate an
asymmetry image. See also ref. [11].
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In an inelastic neutron scattering experiment, one measures the number of neutrons
scattered from a sample as a function of their final wave vector kf given their initial
wave vector ki. The scattering event is thus characterized by 6 variables: three
components of ki and three components of kf. However, what we are really
interested in is the energy transfer @w and momentum (or wave vector) transfer Q
from the neutron to the sample, given by the energy and momentum conservation
rules,

h
h

w = - = -E Ei f i f
m

k k

2
2 2

2
( ) {1}

and Q  =  ki – kf {2}

respectively. This corresponds to only four variables, i.e. there are two redundant
variables, which should be carefully chosen to optimize the experiment. For non-
crystalline samples, only Q = | Q | and @w  are meaningful, and there are four
redundant variables.

2.2. SCATTERING TRIANGLE

It is useful to study the diagram in real (fig. 1a) and reciprocal (fig. 1b) space of a
scattering event. The latter is called the scattering triangle, and shows the
kinematical conditions ki and kf must fulfil to obtain a particular energy and
momentum transfer; one talks about "closing the scattering triangle". From
figure 1b, it is easily seen that for a given @w and Q, any combination of ki and kf

that lies on the dotted line in the figure can be chosen. This corresponds to one of
the two redundant variables in the scattering event mentioned above. It is used to
optimize the intensity and resolution of the experiment, as discussed in the
following chapters.

ki

f

Q

kf

ki

f

Qi Qf

Q

kf

a b

Figure 1 - Scattering event in (a) real space and (b) reciprocal space Qi and Qf are
the projections of ki and kf onto Q and f is the scattering angle.
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Figure 8 - The IN6 spectrometer at the ILL.

IN4, also at the ILL, uses a large focussing crystal monochomator to select the
incident energy with a Fermi chopper to provide the pulse structure [9]. The
focussing of the monochromator provides a large flux enhancement for experiments
where beam divergence and consequently Q resolution is less important. The
curvature of the monochromator can be carefully controlled to provide optimal
space and time focussing conditions [10].

Two background choppers are used to eliminate fast neutrons and gs and produce
broad pulses that are then incident on the monochromator. The Fermi chopper is
located between the monochromator and the sample.

TOF instruments on a steady state source have an advantage over instruments on a
pulsed source in that their maximum operating frequency is not dictated by the
source. However, innovative instrumentation designs may provide the opportunity
to increase the effective repetition rate on a pulsed source by phasing an array of
chopper in such a way that the pulse can effectively be used several times.

4.3. MULTI-CHOPPER TOF SPECTROMETERS

I will refer to the last group of chopper spectrometers as multi-chopper TOF
instruments. There are several examples on steady state sources, such as NEAT at
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The Hamiltonian is solved in terms of products of two-dimensional oscillator
functions and one-dimensional rotator functions.

abc

fed

Figure 2 -  Schematic representation of rotation-translation coupled dynamics. The
centre of mass traces out a complete period in the anti-clockwise direction (a-f-a),
while the protons undergo a reorientation of 2p/3 in the opposite sense. Quantum
mechanically, the central atom of the rotor occupies a larger volume than in SPM
and the proton distribution  is approximately square.

The above Hamiltonians refer to molecular systems for which the dynamics can be
described within a limited number of degrees of freedom. They are only valid at
liquid helium temperatures when the lattice motion is quenched. Accordingly, as
will be illustrated in measured spectra, tunnelling spectra are rather simple (see
figures 2 and 3).

2.2. THE DYNAMICAL MATRIX FOR MOLECULAR VIBRATIONS

In contrast to tunnelling spectroscopy, vibrational spectra for most molecular
systems are rather complex, there being 3n – 6 non-zero modes for a molecule of n

atoms. In a crystal with N atoms per unit cell, Bloch waves describe the modes, and
3N modes with wavevector k = 0, of which 3 translational (acoustic) modes have
zero frequency, have to be calculated.




