SYNOPTIC TABLES OF THE PROBLEMS

CHAPTER 3. HAMILTON’S PRINCIPLE

Ne° | Title Level | P. | Features
3.1 | The Lorentz force Kk 116 | Hamilton’s principle applied to an
electromagnetic problem
3.2 | Relativistic particle in | * %% 117 | Relativistic Binet’s equation
a central force field
3.3 | Principle of least * % * 118 | Justification of the concept of
action? “least action”
3.4 | Minimum or *k 119 | Why the action is not always
maximum action? minimal
3.5 | Is there only one *k 120 | Hamilton’s principle. Through
solution which makes two points may pass several
the action stationary? trajectories
3.6 | The principle of *x 121 | Alternative to the Hamilton
Maupertuis principle for the determination
of the trajectories
3.7 | Fermat’s principle *k 122 | Hamilton’s principle in the
domain of optics
3.8 | The skier strategy *x %% | 122 | Calculus of variations for the
brachistochrone
3.9 | Free motion on an *x 123 | Calculus of variations with a
ellipsoid holonomic constraint.
Lagrange multipliers
3.10 | Minimum area for a Kk 124 | Calculus of variations with an
fixed volume integral constraint.
Lagrange multipliers
3.11 | The form of soap films | * x % 125 | Amusing application of
Hamilton’s principle.
Calculus of variations
3.12 | Laplace’s law for * % * 127 | Hamilton’s principle applied to
surface tension hydrostatics
3.13 | Chain of pendulums *x 128 | Hamilton’s principle for a
continuous system
3.14 | Wave equation for a *k 128 | Building a Lagrangian density
flexible blade
3.15 | Precession of * %% | 128 | Hamilton’s principle in the

Mercury’s orbit

context general relativity




20 1 — THE LAGRANGIAN FORMULATION

One chooses a system of perpendicular axes in the inclined plane: horizontal
X X', and YY" along the direction of steepest upward slope. The center O
of the axle is characterized by its coordinates X et Y in this frame with an
arbitrary origin A. The direction C’/C makes an angle 6 with the horizontal
line XX’. We denote by ¢ and ¢’ the angles which mark the positions of
reference points on the circumference of the wheels with respect to the line
normal to the inclined plane. Thus, the system is described in terms of 5
generalized coordinates (X,Y, 0, ¢, ¢').
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Figure 1.4 — Axle with independent wheels rolling without slipping on a
inclined plane.

1. There exist four scalar relationships concerning the constraints of rolling
without slipping for each of the wheels (two per wheel). In fact, two of
them are identical. Give the three independent constraint relationships
and show that one of them is holonomic whereas the other two are not.

2. Introducing 3 Lagrange multipliers Aj, A2, A3, write the 5 constrained
Lagrange equations.

3. Interpret the 3 Lagrange multipliers in terms of contact forces.

4. To solve the 8 equations (5 Lagrange equations plus 3 constraint equa-

tions), it is judicious to change variables by defining o = (¢ + ¢’)/2 and
5= (6— ).
Rewrite the Lagrange equations in terms of these new variables. Accord-
ing to the initial conditions, study the various types of behavior for the
axle. In particular, give the equations of the motion if, initially, the axle
center is located at A and sets off down the slope with a speed Vj, the axle
itself being horizontal and having an initial angular velocity 0(0) =w.

5. In this framework, calculate the Lagrange multipliers A; which represent
the reaction forces.
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and the Lagrangian (difference between the kinetic and potential ener-
gies) is:

1 1 1
L= Em(iz + 9%+ %) + qe[zk(xQ +y2—22%) + 5B — i)

==\ /=~

Figure 2.10 — Equipotential surfaces for the scalar potential employed in a
Penning trap. A trajectory for the particle confined inside the trap is also
shown in the figure.

2. Applying (2.4), Lagrange’s equations can be derived as:

1
mi = q.(By+ Ekx),
. . 1
mij = qe(—Bi+ §ky);
mzZ = —q.kz

The equation for the 2 variable can be written Z +w?2z = 0, with the axial
angular frequency w, given in the statement. This equation is integrated
at once to give:

z(t) = a cos(wqt + ¢).

It reflects a sinusoidal behaviour.
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3.12. LAPLACE’S LAW FOR SURFACE TENSION
[soLuTION P. 158] * K Kk

The Hamilton principle applied to hydrostatics.

Let us consider an incompressible liquid (mass density p) lying, under the
influence of a vertical constant gravitational field g directed downwards, in
a parallelepipedic channel along an infinite horizontal axis y’y (to avoid the
boundary effect in that direction). Let O be an arbitrary origin on y'y, and
Oz a horizontal axis perpendicular to Oy; the upward vertical is Oz. The
Oz plane is thus a section plane and the form of the surface is a curve
z(x). This form is determined, in a static way, by a minimization of the
gravitational potential energy and the surface potential energy T'S. The
surface tension of the liquid in contact with the air is T, supposed to be
constant, and S the air-liquid interface area. Because of the translational
invariance along the y'y direction, we can reason using a slice with unit
thickness in that direction. The edges of the channel are taken at the
abscissas ¢ = 0 and x = [.

The liquid-air-wall interface points are assumed to be fixed at z(0) = h =
z(1). We wish to minimize the total potential energy with fixed bounds.
Moreover, we have in addition the constraint of a constant volume.
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Figure 3.3 — Channel containing an incompressible liquid. In a slice
of liquid, one defines a system of axes zOz. The form of the meniscus
is given by the curve z(z).

1. Give the expression of the functional of the total potential energy Vp(z).

2. Express in the same way the functional of the volume V(z).

3. Give the Euler-Lagrange equation constrained by a given volume, which
allows the determination of the curve z(x). It is useful to introduce the
curvature radius R(x) at each point.



170 4 — HAMILTONIAN FORMALISM

Figure 4.1 — Figure, in phase

space, obtained from the po-
sitions of a system after peri-
odic impulses labelled by the
progressive numbers. This is
the case of complex eigenvalues

with unit modulus for the prop-
agator.

e If the eigenvalues of the propagator are real or, equivalently, if the absolute
values of the trace are larger than 2, the successive points lie on a hyper-
bola. Starting from a point located exactly on one of the asymptotes,
the next point will lie closer to the fixed point according to a geometric
progression. This is the convergent direction of the hyperbolic point. In
contrast, starting from the other asymptote, the point will move away
from the fixed point according to the inverse common ratio. A non singu-
lar initial deviation always leads to a departure from the fixed point. We
say that we are faced with a parametric resonance. The fixed point is
unstable. We have plotted such a situation in figure 4.2. We may remark
that the stroboscopic order jumps from one branch to the other. This is
a consequence of negative eigenvalues.

Figure 4.2 — Same situation
as depicted in figure 4.1 in the
case of a propagator having

negative real eigenvalues.
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Figure 5.7 — Trajectory, in S =
the plane (p,z), for a particle —0.I -
subjected to an attractive cen- —0.2 -
tral electrostatic potential and a RS S 0‘ 6
constant electric field along Oz. -03 L ’

5.10. ORBITS OF EARTH’S SATELLITES
[STATEMENT AND FIGURES P. 248]

1. Let us begin with the obvious equality |r — o> = (r —02)2 = r2 4 02 —
20ru, where u = cos(7, 2) is the cosine between the radius vector and the
Oz axis. It follows that

1 1 2ou o2\
——=—(1-— 4 = .
lr—oz| r T 72
One works at a distance much larger than the distance between the two
centers o/r << 1; it is therefore justified to perform a truncated expan-

sion of the square root, which relies on the well known formula (1 +5)_1/ 2
= 1—¢/2+ 3¢%/8. We arrive at the desired formula:

1 1 ou  (3u?—1)0? 3,4
—— 44X 40 .

lr—c2] r 12 273 +0("/r7)
The expression for 1/ |r + oZ| follows simply by changing ¢ into —o.

The potential is deduced at once

1 (3u?—1)0?
=-K|-+—F—]|.
v {r + 2r3
This expression should be compared with the analog obtained from a
revolution ellipsoid:

B 1 (Bu?—1)(I-1Is)
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5. Let us start from the Kepler trajectory given by

1 1 1+ l
— =- € Ccos o

Q
with p = p2 /(mK), e = \/1 + 2E.p2/(mK?2). We make the substitutions
of question 3 to find the equation of the trajectory for the harmonic
oscillator:

l 1 1

— = — 4+ —e cos(2¢).

P> p P (24)

Using the property cos(2¢) = cos? ¢—sin? ¢ and the Cartesian coordinates
T = pcos¢, y = psin ¢, we arrive at the following equation:

.T2 y2

+
pl/(1+e)]  [pl/(1—e)]
This is the equation of an ellipse with its center at the origin, i.e., at
the center of force, with a semi-minor axis b = 1/pl/(1+ ¢€), and semi-

major axis a = /pl/(1 — e). We present in figure 6.7, the correspondence
between the two types of trajectories.
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Figure 6.7 — Passage from the Kepler trajectory (in light grey) to the
harmonic oscillator trajectory (dark grey) using the proposed contact
transformation. The corresponding positions are displayed as full circles.
A complete revolution around the Kepler ellipse corresponds to half
a revolution on the harmonic oscillator ellipse.
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This transformation allows us to generalize the notion of drift for the
cyclotron orbit (we already met with such a drift by the addition of
an electric field in problem 2.9). Let us imagine a supplementary force
F acting on the particle. For simplicity we assume that this force arises
from a potential V(y), which depends on the y coordinate only and which
varies slowly over a range of order of the cyclotron radius.

7. Write down the complete Hamiltonian, as well as the Hamilton equations
relative to the (Y, Py) variables. Deduce that, on average over one revo-
lution, the center of the cyclotron circle drifts along the Oz axis with a
velocity to be determined.

This result is quite general: there is a drift perpendicular to the force,
that is along the equipotential lines, with a velocity Vy = (B x F)/(q.B?).

7.8. ILLUMINATIONS CONCERNING THE AURORA
BOREALIS [SOLUTION AND FIGURE P. 379] * *

A fascinating natural phenomenon studied in detail. It is strongly advised
to solve problems 2.9 and 7.7 before continuing.

To a good approximation, the Earth’s magnetism is that of a magnetic
dipole. In the magnetic equatorial plane, the magnetic field, which is per-
pendicular to it, takes the values B, = 0.3110~*(Ry/R)? Tesla (B, is the
value of B at the equator). In this formula Ry designates the Earth’s ra-
dius and R the distance to the center of the Earth, for which the field is
measured.

An electron of mass m, charge g. and energy E crosses the equatorial plane,

at a distance R from the center of the Earth, its velocity making an angle

« with the direction of the magnetic field.

1. Recall the expression of the cyclotron frequency and show that the cy-
clotron radius (projection of the trajectory onto the equatorial plane) in
the non-relativistic limit is:

VomEsin? o

R, =
geBe

In units of the Earth’s radius, what is the value of this radius for a = 7 /4
and for an energy E = 60 keV, at a distance 1.5Ry from the Earth’s
center. Give also the period of this cyclotron rotation.

Data: g, = 1.6 107 C, m = 9.111073! kg, Ry = 6367 km.
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As we saw in problem 7.7, this force leads to a drift of the cyclotron

motion with a velocity P

Vi 4B. N,
where N = B/B is the unit vector along the field line. IN is oriented in
the south-north direction; F' being radial, the drift velocity V; is directed
in the east-west or west-east direction, depending upon the sign of ¢..
Finally the modulus of this drift velocity is simply F/(q.B.) that is

3E sin® o

We show in figure 7.7 a number of trajectories for an electron in the
Earth’s magnetic field.

Figure 7.7 — Trajectories, in the Earth’s magnetic field, calculated
numerically using Hamilton’s equations, for a 100 keV electron,
passing at 1.6Rr at the magnetic equator, and making an angle
45 deg with the magnetic field. To clarify the various motions,

we have chosen a magnetism much weaker than the real one.



386 8 — FROM ORDER TO CHAOS

We will see how to describe the behaviour of this system, by introducing
the Poincaré sections and the basic notions for the chaos phenomenon
will be presented and illustrated with the help of this experiment.

8.2. THE MODEL OF THE KICKED ROTOR

The simplest mechanical system which exhibits a chaotic behaviour is the
periodically kicked rotor. It is specified by an angle . When free, its
Hamiltonian is given by Ho(p) = p?/(2I), in which I is the moment of
inertia and the momentum p = I6 is also the angular momentum. This
Hamiltonian is a first integral. The phase space is a cylinder (# is an angle
which varies between 0 and 27, whereas p can be any real number), and
the trajectories are circles (transformed into straight lines if the cylinder is
developed), since p = const.

Now we submit the rotor to a periodic impulse (period T and angular
frequency w = 27 /T) which, without modification of the angle, instanta-
neously changes its momentum by a quantity proportional to sin 6. Without
loss of generality, the period can be chosen as the unit time and the moment
of inertia can be chosen as unity (I = 1, T = 1, w = 27). The periodic
impulse leads to an instantaneous variation of momentum Ap = Ksin6,
for the nth kick.

Ont1 Figure 8.1 — Phase space

for the kicked rotor. The
cylinder represents the angle
[ e K sin 0,41 along the basic circle with

the time along the genera-
trix. The grey arrow rep-

Pn resents the periodic impulse

t=nT 0, which changes the angular
g velocity by a quantity pro-
portional to the sine of the

e N angle.

This Hamiltonian system is one-dimensional but it is non-autonomous and
non-integrable; however it is simple to solve because, between each of the
kicks, the angular velocity remains constant and between the impulses n and
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Figure 8.3 — Poincaré’s section for the standard mapping with K = 0.75.
The 36 initial conditions have been iterated 2000 times each.

At the limit of a null perturbation, they become straight lines; they are
the remnants of the non-resonant tori discussed previously. The most
clearly visible are located on either side of the value p = 7. For other
initial conditions, the filling in can take more time.

We also observe between these KAM curves the presence of “islets” formed
by closed curves with elliptic shapes and, on each side of these islets, zones
where the points seem to be scattered at random. These structures are
the remnants of the resonant tori described above.

Thus, from the straight lines of the Poincaré sections without perturba-
tion, there remain regular curves separated by zones with more compli-
cated structure.

All these observations are the conclusion of the famous KAM theorem
which can be stated as follows.

Let us consider an integrable (non degenerate) system. If one adds a weak
perturbation, most of the invariant non-resonant tori do not disappear.
These tori, filled in a dense way by the trajectories (a single one is suffi-
cient), form the majority in the sense that the measure of the complement
of their union is small for a weak perturbation.
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Figure 8.16 — Poincaré section corresponding to the damped pendulum,
starting from 9 different initial conditions. The various parameters are
indicated in the figure.

6. The Poincaré section corresponding to the damped pendulum is repre-
sented in figure 8.16 for a number of iterations equal to 1500, with the
parameters K = 0.04 and v = 0.15, and for 9 different initial conditions.

8.11. STABILITY OF PERIODIC ORBITS ON A
BILLIARD TABLE [STATEMENT AND FIGURE P. 409]

1. We choose an origin O and a point A on the cush which is specified by its

curvilinear abscissa s =OA. At point A is defined the unit vector along
the tangent (s), oriented in the sense of increasing s, the unit vector
along the normal n(s), oriented towards the interior of the table, and
the unit vector perpendicular to the plane of the table z, such that the
trihedron (¢, n, z) is direct.

Let B be a point close to A, such that ds =AB, where the tangent is ¢’
and the normal n’. The directions along n and n’ intersect at a point C.
The circle of center C' and radius R = C'A is called the osculatory circle,
and R is the radius of curvature at the point A. The convention is such

that

dt:t’—t:%n:%(zxt).

With such a definition, the radius of curvature is positive, R > 0, if con-
cavity is directed inward, and negative, R < 0, if it is directed outward.
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