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1.2.2 - The magnetic behavior of superconductors

If the drop to zero of the electrical resistivity of superconductors is the most spec-
tacular phenomenon, their response to a magnetic fi eld was just as unexpected and 
has turned out to be particularly rich in consequences.

The MEISSNER-OCHSENFELD eff ect

In 1933, in Berlin, Walther MEISSNER 
and Robert OCHSENFELD showed that 
magnetic fi eld B is “expelled” from 
superconductors, that is to say that 
when subjected to an external mag-
netic fi eld, they divert the fi eld lines 
so that the magnetic fi eld vanishes 
inside 2. The superconducting mate-
rial behaves as a perfect diamagnet. 3

Critical fi elds and superconductors of types I and II

Very early on, magnetization measurements showed that the superconducting phase 
existed in a limited range, not only of temperature but also of magnetic fi eld. After 
much confusion and confl icting experimental results it was fi nally the theoretical 
analysis of A. ABRIKOSOV 4 in 1957 that showed that superconductivity can disap-
pear via two distinct scenarios, thus leading to the classifi cation of superconducting 
materials into those of type I and of type II.

In a superconductor of type I, the superconductivity vanishes abruptly at a critical 
value Hc of the fi eld. Hc is always small, with μ0 Hc no more than 0.1 tesla. Only pure 
elemental superconductors (with a few exceptions, such as Niobium), are of type I.

In a type II superconductor, there is no discontinuity to be seen, but rather a gradual 
weakening of the magnetic response starting from a lower critical magnetic fi eld Hc1. 
Complete suppression of superconductivity occurs only when the fi eld reaches an 
upper critical value Hc2 which can be very high (μ0 Hc2 may be several tens of, or 
even a hundred, teslas). Superconducting compounds and alloys are all of type II.

1.2.3 - Critical current

As well as the temperature and magnetic fi eld, a fi nite density of electrical current 
also destroys superconductivity when it exceeds some critical value. We shall see 

2 W. MEISSNER, R. OCHSENFELD (1933) Naturwissenschaffen 21, 787.
3 W. MEISSNER and R. OCHSENFELD interpreted their result as seeing “a possible anal-

ogy to ferromagnetism”; this will be taken up by the LONDON brothers. It is true that 
W. HEISENBERG had just provided a “microscopic” quantum theory based on interactions 
between the spins of closely neighbouring electrons.

4 A.A. ABRIKOSOV (1957) Sov. Phys. JETP 5, 1974.

Walther MEISSNER
Robert OCHSENFELD
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Table 2.1 - Values for the LONDON penetration depths  
as  calculated and measured for a few metals 

Element Al Sn Pb Cd Nb 

Theoretical λL [nm] 10 34 37 110 39 

Measured λ [nm] extrapolated to 0 K 50 51 39 130 44 

2.5.2 - Temperature dependence of the LONDON penetration depth 

Experiments show that the LONDON penetration depth λL(T ) increases slowly at 
low temperatures and diverges approaching the transition temperature Tc (Fig. 2.7). 
The empirical law quoted most often to represent its behavior is 
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with near Tc    λL(T ) ≈ (Tc − T )−½  (2.32) 

implying, from relations (2.24) and (2.32), 

 ns(T
 ) ≈ (Tc − T ) near Tc . (2.33) 

This also indicates that the superconductivity disappears with the “conversion” of 
the superconducting electrons to normal electrons. 

 

The LONDON penetration depth  
increases slowly at low  temperatures 
and diverges at Tc . This divergence is 
due to the disappearance of the  
superconducting electrons. 

Figure 2.7 - Thermal dependence of the LONDON penetration depth 

2.6 - Applications to superconducting wires 

2.6.1 - A wire in magnetic field 

The behavior of a cylindrical superconductor of radius R, placed in a magnetic field 
B0 parallel to its axis (Fig. 2.8) is not fundamentally different from that of a slab. 
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This was a distinction that PIPPARD could not have made at the time. With the ben-
efit of hindsight, and in order to clearly separate these two contributions, we will 
discuss first the case of the pure superconductor, and afterwards the dirty super-
conductor that PIPPARD had addressed directly with his formula (3.25). 

3.2 - Non-locality in pure superconductors 

The intrinsic non-locality originates in the fact that superconductivity is carried by 
COOPER pairs formed by two electrons that can be very far apart (up to several 
hundreds of nanometers), while intuitively the current density j(r) may be better 
identified with the displacement of their centers of gravity. With such a description, 
we might well question the local form of the proportionality between j(r) and A(r) 
(eq. 2.94) since, if they are far apart, the two electrons of the same COOPER pair can 
“feel” very different values of the vector potential (Fig. 3.1). 

 

Figure 3.1 - COOPER pairs in a  
non-uniform vector potential  
The figure represents COOPER pairs with the 
same centrer of gravity in a non-uniform 
vector potential A. As they are separated 
by an average distance ξ0 two electrons in 
the same pair “feel” different values of A. 

Should we retain LONDON’s equation (2.94) by taking for A its value at the center 
of gravity of the COOPER pair, or should we instead use some averaging, taking into 
account the values of A where the electrons actually are? The experimental results 
show that the second solution should be retained. In the LONDON gauge, this leads 
us to write, by analogy with the anomalous skin effect which has similar origins, 
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where ξ0 is (at 0 K) the average value of the distance between two electrons in the 
same COOPER pair. 

For a more thorough analysis, this expression can be put in the form 
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where: 



Chapter 4 
 

THERMODYNAMICS  
OF TYPE I SUPERCONDUCTORS 

A decisive step in the history of superconductivity was the recognition that there 
was a true phase to be reckoned with, and the aim of this chapter is to bring a ther-
modynamic description of that phase. We will restrict ourselves here to the case of 
type I superconductors whose superconducting and normal phases are separated in 
the (H, T ) plane by a single line 1 defining the critical field Hc(T

 ) (Fig. 4.1a). 
Type II superconductors, where a mixed state appears, will be treated in Chapter 6. 

 

Figure 4.1 - Type I superconductor 
(a) The superconducting and normal states are separated by a single line Hc(T ). (b) In the 
superconducting state the magnetization M is equal and opposite to the field H,2 which 
makes it a perfect diamagnet. In the normal state, the magnetization vanishes, but in fact the 
normal state is very weakly diamagnetic. χ is the magnetic susceptibility defined by M = χ H. 

                                                        
1 Type I superconductors are, without exception, pure metals of a single element. A few 

pure metals of a single element, such as niobium and vanadium, are of type II, as are all 
alloys and compounds. 

2 In this book we will encounter H and B on numerous occasions. The notation in the 
literature follows (at least) three different conventions. The first is to call H “the mag-
netizing field” and B the “magnetic field.” The second has H the “magnetic field” and B 
the “magnetic induction.” The third denotes B the “magnetic field” and H the “H field.” 
We have taken the third option. 
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the modulus of the total current density somewhere reaches the critical current den-
sity of the material.  

5.9.2 - Magnetic field applied parallel to the axis of the wire 

The LONDON currents are normal to the radial vectors (Fig. 5.13a), and are thus 
perpendicular to the current carried. The total current density is then 

   j
tot = ( j trans )2 + ( jscreen )2 .  (5.57) 

Since each of the densities taking its highest value at the surface, 

 
  
jhigh
trans =

Ic(B0 )
2πRλ

and jhigh
screen = B0

μ0λ
 (5.58) 

the critical intensity Ic(B0) now depends on B0. Since the transition towards the 
normal state begins when jtot reaches jc, we have 
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which means that, in an axial field B0, the maximum current intensity that can pass 
in a type I superconducting wire of radius R is  

 
  
Ic(B0 ) = Ic

2(B0 = 0) − 2πR
μ0
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2

(B0 )2 .  (5.60) 

The dependence of this critical intensity as a function of B0 is shown in Fig-
ure 5.13b. This intensity vanishes for B0 = Bc, beyond which field the wire no long-
er transports current without energy dissipation. 

 

Figure 5.13 - Critical current of a wire in a magnetic field parallel to its axis 
(a) Distribution of the transported currents j trans and the screening cur-
rents j screen in a superconducting wire carrying a current I trans and subject to 
an applied field B0 parallel to the wire. The two distributions of current are 
orthogonal. (b) Variation of the critical current intensity as a function of B0. 
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5.9.3 - Magnetic field applied perpendicular to the axis of the wire 

As the wire can be considered as a very elongated ellipsoid, any direction perpen-
dicular to the cylinder axis constitutes a principal axis with associated demagnetiz-
ing factor N = ½. The screening currents flow around the direction of the wire’s 
axis with density 

 
  
jscreen = jhigh

screen sinθ with jhigh
screen = B0

λμ0(1− N)
= 2 B0

λμ0
 (5.61) 

where θ is the angle between B0 and the radial vector passing through the point 
considered (Fig. 5.14). The screening current therefore flows in opposite directions 
on the different sides of the wire and the highest screening current densities occur 
at two positions on the surface directly opposite each other.  

 

Figure 5.14 
Screening currents in a wire placed 
in a magnetic field perpendicular to 
its axis (cross-section perpendicular 
the axis of a cylindrical wire) 
The screening currents flow in the 
direction of the wire’s axis, which is a 
special case of an ellipsoid of demag-
netizing factor N = ½. The surface 
current density varies as sin θ. 

The density of transported current is distributed, as always, within the penetration 
depth, in a single direction and it is highest at the surface of the sample where it 
equals 

 
  
jhigh
trans = I trans

2πRλ
.  (5.62) 

As a consequence, the highest total current density is on the surface of the wire, at 
the position where the densities of transported and screening currents are simulta-
neously greatest, and where they flow in the same sense. 

In this geometry, the relation between the critical current density and the external 
field is then 

 
  

2B0

λμ0
+

Ic(B0 )
2πRλ

= jc.  (5.63) 

Thus in a transverse field B0 the maximum current intensity that a type I supercon-
ducting wire of radius R can transport without loss is 
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The normal filament must be replaced by a vortex which is described as a physical 
“object” of cylindrical symmetry (Fig. 6.8) within which, starting from a central 
axis, the density of superconducting electrons increases from zero to ns∞ over a 
characteristic distance ξ and from which the magnetic field decreases from a max-
imum Bcenter towards zero over the characteristic distance λ. According to the laws 
of electromagnetism and the second LONDON equation, emergence of the magnetic 
field B requires vortex currents of the LONDON type. These are most commonly 
considered as screening currents, but here we visualize them more as currents gen-
erating an islet of magnetic field within the superconductor. 

The name “vortex” is an archaic form of the Latin word “vertex” that means 
“whirlpool.” 

 

Figure 6.8 - A vortex 
Starting from a central axis, the magnetic field B 
taking a maximum value of Bcenter accompanied 
with whirling superconducting currents,  
decreases over the characteristic distance λ  
while the density of superconducting electrons 
increases from zero to its bulk value ns∞ over the 
coherence length ξ. The magnetic field varies 
little around the vortex center because of the low 
density of LONDON currents in the core region. 

Rigorous determination of the conditions for stability of a vortex requires a precise 
knowledge of the real profiles of the magnetic field B(r) and the density of super-
conducting electrons ns(r). This problem can be treated starting from the 
GINZBURG-LANDAU equations and leads to a magnetic field which has the form 
drawn in Figure 6.8. At this stage we make the simple approximation that ns(r) and 
B(r) vary exponentially from the central axis 6, each with its characteristic length 
(ξ and λ respectively) as they would from a planar surface, i.e. 

   ns(r) = ns∞ 1− e
− r
ξ( ) ; B(r) = Bcenter e

− r
λ .  (6.16) 

We should not forget that the penetration depth λ  is not independent of ξ as the 
depletion of superconducting carriers reduces the density of LONDON currents that 
must then spread out more to maintain the magnetic field. In fact this has already 
been taken into account in going from the LONDON length λL to the penetration 
length λ  in the relation (3.6). 

                                                        
6 A more realistic profile has been proposed within the framework of the GINZBURG-

LANDAU model. 
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7.1.1 - Force exerted on a vortex by a transported current 

The first situation we consider is when the current density J, in the y direction, car-
ries a continuous current across the LONDON regions of the vortices that are present 
(see Fig. 6.18). 

As seen in Figure 7.1, the force acting on each vortex is transverse and directed 
perpendicularly to the direction of the current. 

 

Figure 7.1 
Force acting on a  
vortex in the presence of  
a uniform current density J 
In the presence of a uniform  
superconducting current density J, 
a vortex is subjected to a transverse 
force given by the relation (7.1). 

7.1.2 - Interaction forces between vortices 

Force between two vortices 

The second situation is when two vortices V1 and V2 are sufficiently close that 
each interacts with the vortex current of the other. An element of unit length of the 
vortex V1, which feels the current density j2 associated with the vortex V2 
(Fig. 7.2), is subject to a repulsive force from that vortex, 

   f 1-2 = φ0 j2 × û1  (7.2) 

where û1 is the unit vector along the axis of vortex V1. In return the vortex V2 
feels an equal but opposite force from V1. 

 

Figure 7.2 
Repulsive force between two vortices 
As each vortex feels the vortex current 
of the other, it experiences a repulsive 
force given by (7.2). 
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8.6.2 - Nature of the superconducting gap 

The superconducting gap is of a nature very different from that of a semiconductor 
which is due to the periodic potential of the lattice ions. In that case the structure of 
the energy levels is essentially independent of temperature and the electrons occu-
py the levels individually with a probability given by the FERMI function. The elec-
tron interactions bring only minor corrections. 

In superconductors, the gap has its origin in the interactions between electrons. At 
low temperatures it varies little, but after the quasiparticles occupy the pair states it 
collapses and falls to zero, which marks the disappearance of superconductivity. 

There exists an operational semiconductor representation of the “density of states” 
of superconductors. In that representation the two bands equivalent to the conduc-
tion and valence bands of semiconductors are, for the first, the density of states 
D(E) of the quasiparticles and for the second D*(E) = D(− E) (Fig. 8.18). They are 
separated by 2Δ (the gap in the semiconductor sense). 

 
Figure 8.18 - Semiconductor representation 

The equivalents of the “conduction band” and the “valence band” are the density of 
states of quasiparticles and its reflection, respectively. This representation is partic-
ularly convenient if we wish to take into account tunneling effects of quasiparticles. 

This operational representation is particularly useful to describe the tunneling ef-
fects of quasiparticles (to be distinguished from JOSEPHSON effects that are the 
tunneling of COOPER pairs) and must be restricted to such effects. 

8.6.3 - Coherence length 12 

Similarly to the result of section 8.4.5, the average distance between two electrons 
in a pair is related, by the uncertainty principle, to the spread δk over pair states 
| k↑ , − k↓〉 visited by the COOPER pairs. The calculation, like that giving the rela-
tion (8.78), leads to the result 

 
   
ξBCS(0) = vF

πΔ(0)
 (8.90) 

                                                        
12 We remind the reader: the energy measured from the FERMI level ξ (in regular type) and 

the coherence length ξ (in italics). 
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Figure 9.7 - Fluxons in an ABRIKOSOV lattice  
(a) Lines of equal density of superconducting electrons and currents in a dense hex-
agonal  ABRIKOSOV lattice 6. The LONDON currents of two neighboring vortices cancel at 
the middle of the line separating them. (b) The current densities at M and M’, imag-
ined as hypothetical superpositions of the currents “associated” with each vortex are 
normal to the perpendicular bisector of V1V2 . The circulation of the current density 
vanishes around the polygon formed by the bisectors between a central vortex and its 
neighbors (the WIGNER-SEITZ cell). The flux crossing such a cell is equal to the fluxon φ0. 

9.5.3 - A confined vortex 

In the experiment described in Chapter 6 (section 6.11.5, fig. 6.24), where a vortex 
is confined to a sample of nanometric scale, the LONDON currents near the surface 
and the vortex currents turn in opposite directions and are therefore separated by a 
neutral line where the current density vanishes. Once again, by applying (9.18), the 
path following this closed line can only be crossed by an integer number of flux-
ons: one if it is a simple vortex, or several if it is a super-vortex. 

The sample itself is subject to a higher flux since we must add the contribution of 
the decreasing magnetic field in the LONDON zone. 

                                                        
6 W.H. KLEINER, L.M. ROTH & S.H. AUTLER (1964) Phys. Rev. 133, A1226. 



Chapter 10 
 

THE JOSEPHSON EFFECT  

The JOSEPHSON effect results from the passage of “particles” COOPER pairs, and 
not of individual electrons, between two superconductors separated by an insulat-
ing barrier (SIS), by a normal metal (SNS), by a simple constriction in the super-
conductor (SCS or “weak link”) or by a ferromagnetic layer (SFS). Each of the 
superconductors, (S1) or (S2), hosts a superconducting condensate whose wave 
function (expression 9.2) possesses its own characteristics: a number of COOPER 
pairs n1(r,t) or n2(r,t) and a phase θ1(r,t) or θ2(r,t). In the first sections of this  
chapter we will discuss in detail the “standard” case of the SIS junction, where the 
COOPER pairs pass from one of the superconductors to the other by tunneling.  

The more complex SNS junctions will be introduced in section 10.7. The SFS  
junction will be the subject of section 10.8. All these junctions are known as  
“JOSEPHSON

 junctions.” 

10.1 - JOSEPHSON equations in an SIS junction 

As the thickness of the insulating layer is of order of a nanometer, the wave func-
tion of the COOPER pairs of the superconductor (S1) extends into the superconduc-
tor (S2) and inversely, which leads to a non-zero probability of transfer of COOPER 
pairs from one to the other by the tunnel effect (Fig. 10.1b). 

 

Figure 10.1 - SIS JOSEPHSON Junction 
(a) An SIS JOSEPHSON junction is composed of two superconducting blocks 
(1) and (2) separated by an insulating barrier. Each block is characterized by 
its number of Cooper pairs n1 or n2 and by the phase of its wave function θ1 
or θ2. (b) The overlap of the evanescent parts of the wave functions of the 
COOPER pairs of each side allows the barrier to be crossed by tunneling. 
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SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE 
‘‘SQUID” 

SQUIDs are closed superconducting circuits containing one or more JOSEPHSON 
junctions. They may be isolated physically and only interact with the external envi-
ronment by electromagnetic coupling (rf-SQUID) or they may be inserted into part 
of electrical devices (DC-SQUID). They are at the heart of the most sensitive in-
struments for measuring magnetic fields. This chapter will introduce us to how they 
work and describe some of their most common configurations. 

11.1 - Nature of the SQUID current 

We first consider the simplest SQUID consisting of a superconducting ring inter-
rupted by a single JOSEPHSON junction (Fig. 11.1). A magnetic field flux 
ϕ = ∫∫B ⋅ dS passes through the ring, that carries a current of intensity I. Positive 
signs for the orientations of B and I are chosen as indicated in Figure 11.1. 

Figure 11.1 
Elementary single junction rf-SQUID 

The single junction rf-SQUID is a closed super- 
conducting circuit into which is inserted 

a JOSEPHSON junction between C and D. 
A current I flows in the circuit through 

which passes a magnetic field flux φ. 

In such a circuit there are three terms entering the change in phase of the wave 
function of the superconducting condensate: 

»  a phase change due to the circulation of the current density j along the path DC 
(the large arc) followed in the positive direction (expression 9.11); 

 

    
(θC −θD )current =

mp

np qp
j ⋅dlD

C
∫ ;  (11.1) 
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If the pendulum had a long, but not infinitely long, time available it would need to 
be launched with a minimum angular velocity ωext  2Ω in order to complete a 
swing between t = − τ/2 and t = + τ/2. In the language of the junction, an external 
magnetic field Bext  BcJ would be necessary to allow a JOSEPHSON vortex to stay 
within a junction that is long, but not infinitely so. 

12.6 - Current transport in a long JOSEPHSON junction 

12.6.1 - Long junction carrying a current 

At the beginning of section 12.2, we assumed (see relation 12.4) that in zero exter-
nal field the current density carried was uniformly distributed across the junction. 
This was, in fact, using the hypothesis of a short junction and we should now return 
to the problem with the general equations (12.26 to 12.28) or else, if the current is 
sufficiently small, with their linearized forms (12.30 and 12.31). 

In fact, the current distribution will depend on the geometry of the junction. The 
simplest to analyse is the “in line JOSEPHSON Junction” (Fig. 12.19) where the cur-
rent circulation in the superconductors electrode creates a magnetic field ± Bel 
along the z direction 7 at y = a/2 and y = − a/2. By application of AMPÈRE’s law, 
and taking the thickness e of the electrode to satisfy e  c, 

 
  
Bel(+a/2) = μ0

I
2c

and Bel(−a/2) = −μ0
I

2c
.  (12.52) 

 

Figure 12.19 - In-line JOSEPHSON junction  
The current crosses the isolating layer along the x direction. By applica-
tion of AMPERE’s law along the dotted line (e  c), the magnetic field 
created by I circulating in the superconducting electrodes is ≈ µ0I/2c. 

which in the absence of an external field leads to the boundary conditions 

 
  
Bz (+a/2) = μ0

I
2c

and Bz (−a/2) = −μ0
I

2c
.  (12.53) 

                                                        
7 R. GROSS and A. MARX 

http://www.wmi.badw.de/teaching/Lecturenotes/AS/AS_Chapter 2.pdf 
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