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6	 Thinking in Physics

Typical student interpretations: The slan-
ting arrow seems to be interpreted as a ray 
(visual?):

– �The rays from Earth cross the rays from the 
Sun (Year 11).

– CD and AB are both in shade (Year 11).

Suggestion: Avoid using the same symbols 
for rays and line of sight.

Figure 1.2 - This figure is intended to explain the visibility of Io, one of Jupiter’s satellites.16
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S
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Typical student interpretation: The light 
may have “deviated”: Each emerging path 
may be the unique continuation of the cor-
responding incident ray.

– �The light has deviated (Year 11).

– �The light has deviated (blanked out). The 
light cannot follow these paths (Year 13).

Ideas to work on: What happens at the 
holes is a diffraction phenomenon.

Suggestion for a less ambiguous drawing:
This diagram suggests the phenomenon 
of diffraction, and shows how to analyse 
the illumination of the screen at various 
points. This involves selecting the relevant 
light paths for each point on the screen 
(backward selection).

Figure 1.3 - Principle of interference using Young’s holes  
(S: point source of light, S1, S2: holes in the first screen, P: detector).

16	 Very simplified version of an image shown in Botinelli L., Brahic A., Gouguenheim L., Ripert J. 
& Sert J. (1993) La Terre et l’Univers, Hachette, Paris, p. 121.



Chapter 2 - Some surprising invariances	 13

ask what happens if the source of the signal is more powerful–if the string is struck 
“harder” or someone shouts louder: a good proportion of people questioned27 predict 
that the disturbance will propagate faster. And this, despite the fact that the com-
monly taught formulation (i.e. the speed depends only on the medium) is well known 
to them. What is certain is that they just have not fully realised what this means i.e. 
a surprising thing: that propagation speed is independent of the power of the source.

Figure 2.1 - A situation which underlines the meaning of a well-known 
statement: “for a stretched string, the speed of propagation of a disturbance 
depends only on the mass per unit length and the tension”. In this model, 
the race between the disturbances is a foregone conclusion: it’s a dead heat!

There is some benefit to be gained from such knowledge, i.e. the ritual statement that 
propagation speed depends only on the medium, since it implies that this surprising 
invariance will be questioned by some, or emphasised for others. It is surprises and 
unexpected phenomena of this kind which illustrate how physical theories are not 
just a familiar collection of analyses of situations we know how to handle; they 
have great unifying power for specific cases that we might have thought distinct, but 
which in fact, from certain points of view, prove to be otherwise. 

Sometimes, the merest hint of an explanation is sufficient to induce these welcome 
surprises, these new and unexpected insights.

2.4	 Coefficients of friction

The value of a normal component of contact force FN and that of its tangential com-
ponent FT  are coupled by static or dynamic coefficients of friction for two interac-

27	 Maurines L. Spontaneous reasoning on the propagation of visible mechanical signals, International 
Journal of Science Education, 14 (3) 279-293; Viennot L. (2001) Reasoning in Physics - The part 
of common sense, Dordrecht: Kluwer Ac. Pub., 143-144. See also Wittmann M.C. (1998) Making 
Sense of How Students Come to an Understanding of Physics: An Example from Mechanical 
Waves, Unpublished Ph.D. dissertation, University of Maryland; Wittmann M.C., Redish E.F. 
& Steinberg R.N. (2003) Understanding and Addressing Student Reasoning about Sound, 
International Journal of Science Education, 25: 8, 991-1013. 

The two strings are identical, and their  
tension is the same. 

Which bump will arrive at the wall first?
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ting surfaces. In standard elementary courses on friction,28 the coefficient μs enables 
the maximum allowable value of the tangential component without slipping to be 
calculated: FT ≤ μs FN and the coefficient μd enables the value of the tangential com-
ponent, once slipping has started, to be found: FT = μd FN. For a rectangular block of 
mass m sliding on an inclined plane (at an angle θ to the horizontal), the written nota-
tion of the balance of forces and the fundamental principle of dynamics (air friction 
being “negligible”) gives the value for tangential acceleration (axis downwards):  
a = g (sinθ – μd cosθ).

θ

Figure 2.2 - A situation which underlines the meaning of the standard solution to 
an exercise involving friction: “the acceleration of a skier along the path of steep-
est descent is: a = g (sinθ – μd cosθ)”, where μd is the coefficient of sliding friction 
and g is the acceleration due to gravity. According to this model, the race be-
tween the skiers is a foregone conclusion: dead heat. Why is this so improbable?

Let us imagine (this might be a first year university exam question) that this block 
represents a model of a skier on the line of steepest descent. There is the solution, 
presented to a tutorial group.29 What can we usefully add? 

Here’s a question: if two skiers, otherwise identical in every respect, have skis of 
different widths, does the solution above predict anything about their performance? 
This ski width does not appear in the expression for acceleration, a, but is it not 
relevant? Or else where is it hiding? In the coefficient μd perhaps? Otherwise we 
simply have to resign ourselves to the fact that the solution to this exercise predicts 
the simultaneous arrival of these two skiers on skis of different widths. 

So we come to the question we could so easily have ignored: what exactly do these 
coefficients depend on, and what don’t they depend on? It’s surprising that μd and μs 

28	 For more information on the history and limitations of this simple model, read Besson  U., 
Borghi L., De Ambrosis A. & Mascheretti P. (2007) How to teach friction: Experiments and 
models, American Journal of Physics, 75 (12) 1106‑1113.

29	 See Chapter 4, exercise 4.4.

In a downhill race on a straight 
slope between two skiers of 
very different body shape but 
wearing the same skis who 
will arrive first at the bottom?



Chapter 3 - Analysis of functional dependance: a powerfull tool	 21

a solution in which there is separation of each spatial dimension. There we see the 
power of theory, reduced as it is. Hence we know, with no calculation involved, that 
a force acting in a single direction ( y0  for example) will have no effect on the path 
of a moving object in a direction ( x0 ).41

Whether these are standard examples or not, this type of conclusion can never be 
emphasised enough.

3.3	 Keeping an eye on a causal reading of relations

Contrary to received wisdom, the inclusion of variables in a relationship does not 
necessarily correspond simply to a causal analysis of the situation. 

Hence the situation Marie Curie suggested to her young students42 of a small ball 
immersed in a bowl of water. Disturbingly, her student Isabelle Chavannes’ notes 
state the following:

“What was exerting pressure on the ball when it was in the water? The water, of 
course, but also the air, which was itself pressing on the water. This air pressure 
was transmitted through the water. When the ball was on the surface of the water, 
only atmospheric pressure was pressing on it; when I pushed it under the water, it 
had to support both the atmospheric pressure and the pressure of the water.”

z

Figure 3.1 - Small ball immersed in a bowl of water. 

This simple situation can be read in two ways.

› �A causal interpretation of hydrostatic pressure. Marie Curie’s 
explanation as reported by a student. What was exerting pres-
sure on the ball when it was in the water? The water, of course, 
but also the air pressing on the water. This pressure is transmit-
ted through the water;

› �A Newtonian reading of the situation: what was exerting pres-
sure on the ball when it was in the water? The water.

In the expression p(z) = patm + ρgz, there are two terms in the 
expression for p(z), but this variable locally characterises the 
water and determines its interaction with the ball.

41	 An exercise suggested during a study of French Terminale (Year 13) students features this property 
for a mass spectrometer: does the transit time for a particle of given charge and initial velocity 
parallel to the plates of a plane capacitor depend on the fact that it is charged or not? Besides 
the significant number of errors, the students’ answers provided interesting food for thought. 
(Rigaut M. & Viennot L. (2002) Réduire le théorème du centre d’inertie : jusqu’où ? Bulletin de 
l’Union des Physiciens, 841, 419‑426). 

42	 Collected Lessons of Marie Curie, Isabelle Chavannes (1907) Physique élémentaire pour les 
enfants de nos amis. Work coordinated by B. Leclercq (2003), EDP Sciences, Paris, p. 33
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If the parts in bold fonts of this reasoning are removed, the text is perfectly consistent. 
On the surface of the ball (submerged to a depth z) the water exerts contact forces due 
to the pressure determined by the expression p = p0 + ρgz (using the usual notation 
for variables, axis z0  directed downwards, and origin at the surface of the water). 
Even though this expression includes two terms involving atmospheric pressure p0 
and depth of immersion z respectively, it is the water, and only the water, which 
exerts contact forces on the outside of the ball. A causal reading must not allow the 
strict meaning of the expression to be forgotten.

At a higher level of competence,43 there is one case where the relationship disturbin-
gly hides the factor that determines the value of a variable. This is the expression for 
the electric field E  in the neighbourhood of a conductor in electrostatic equilibrium: 

,n nE
0

= ε
σ , where ,n nE

0
= ε

σ  is a unit vector normal to the conductor directed outward to the 
point under consideration, σ is the local surface charge density and ε0 is the permit-
tivity of free space (Fig. 3.2). 

q

E1

E2

nE
0

= ε
σ

Electric field contributions corresponding 
to charges located on the conductor 
surface (E1) and outside the conductor(E2)

Figure 3.2 - The electric field in the neighbourhood of a conductor is nor-
mal to it. So far as the charge is concerned, the expression mentions only 
the surface density σ in the neighbourhood of the point being considered, 
but in fact this field results from the contribution of all charges in the uni-
verse (here a single external positive charge is shown, while σ is negative).

If we ask students what are the sources of this field E , the overwhelming response is 
that it’s down to the individual charges on the conductor (locally, or over the whole 
conductor).44 However, the principle of superposition means that the field at some 
arbitrary point of some arbitrary configuration is the sum of the contributions from 
all the charges in the universe. Should the only source admissible by the students 
appear in the formula?45 Within the variable σ is the cumulative contribution of all 
the charges present, both outside the conductor and at its surface. The power and 

43	 Typically in France this would be the second year at university or a preparatory class for entry into 
a grande école, second year.

44	 See Viennot L. & Rainson S. (1999) Design and evaluation of a research-based teaching sequence: 
The superposition of electrics fields. International Journal of Science Education, Special issue: 
Conceptual Development in Science Education (continued), 21 (1) 1-16.

45	 In the work of S. Rainson (previous footnote), the “cause in the formula” syndrome is mentioned 
in this connection.
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•	 �if the magnetic field is uniform and the initial velocity is not perpendicular 
to B ?

−− What assumption(s) is/are made in the text which may lead to the assertion 
that the particle is confined to a plane?

−− What is the motion of the particle if v 0  is parallel to the uniform field B ? Is 
the path stable?

−− The fact that the field B  is uniform is mentioned several times in this demons-
tration. Recapitulate where and how.

−− Give orders of magnitude for the values of v, B and R for the LHC (Large 
Hadron Collider at CERN, Geneva)?

4.4	 Sliding on an inclined plane

This topic has already been covered in Section 2.4. What follows is a suggestion for 
the text to be submitted to the students, as it is. Phrases in italics are intended for the 
teacher.

First read (the first part of) this exercise and its answer sheet:  
the skier, in a customary version

Ski jump

A skier of mass m descends a piste consisting of:
−− a rectilinear section AB making an angle θ with the horizontal and of length 
AB = L1.

−− a horizontal rectilinear section BC of length L2.

Denote the magnitude of gravitational acceleration as g. Assume that there is 
friction between the skis and the snow: let μs and μd be the static and dynamic 
coefficients of friction respectively.

L1

L2

A

B Cθ

Figure 4.5 - The elements of a ski slope involved in the ski jump problema)
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a) �The skier is at rest on section AB. Draw a diagram showing the forces exerted 
on the skier. Give the (absolute) value of the frictional force as a function of 
θ. So that the skier can remain stationary on the slope (without using his ski-
poles), θ must be less than a maximum value θ0. Give an expression for θ0.

b) �Now assume that the angle θ is sufficient for the skis to slide on the snow. 
The skier starts from A with speed zero at t = 0. Determine the skier’s 
acceleration.

c) �Choosing an axis x0  coincident with AB and with its origin at A, determine 
the time dependent equation of motion.

d) �Let the time taken by the skier to reach point B be t1. Determine the value of 
μd as a function of g, θ, L1 and t1. Give the value of the speed v1 of the skier 
at point B as a function of L1 and t1.

The teacher’s notes include the diagram below and the solution lines which 
follow. Read this carefully (there are no errors in the calculations).

θ

f N

P Figure 4.6 - Diagram for 
the simplified skier model 

a) 	 f f f= = mg sin θ

	 f < μs mg cos θ  $  θ < θ0 with tan θ0  =  μs

b)	 f  =  μd mg cos θ

	 ma  =  mg sin θ – μd mg cos θ

	 a  =  g [sin θ – μd cos θ]

c)	 x  =  2
1 g [sin θ – μd cos θ] t2

d)	 L1  =  2
1 g [sin θ – μd cos θ] t 21

hence	 μd  =  cos
1  [sin θ – 

gt
L2

1
2
1 ]

	 v1  =  at1  =  g [sin θ – μd cos θ] t1

so	 v1  =  t
L2
1

1

Then answer the following questions

What is the sign of g in this text?
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Part a): 

What does θ mean in the two lines of the “answer” devoted to the static case? 
Is it:
−− the angle at which the skier can get into motion?
−− one of the various angles at which sliding can occur?
−− one of the various angles at which sliding cannot occur?

Has the variable θ been expressed here in algebraic form?

Parts b), c), d):

Is the motion of the skier
−− uniform? 
−− uniformly accelerating? 
−− some other case?

Whatever your answer, state to what property of friction, and/or to what 
assumption, this motion is due.

Luc Alphand (triple world downhill champion: 1995, 1996, 1997) begins his 
descent (under the conditions given in the text) at the same time as a brother 
of the same physical build (geometrically speaking), but who is much lighter. 

Will they arrive at the bottom at same time
−− in accordance with the model given here?
−− in reality?

Discuss: under what circumstances the mass of the moving object is not involved 
in the equation(s) of motion (one, or several dimensions respectively)?

Now assumed to be of the same build and weight, Luc Alphand and his hypo-
thetical twin begin their descent at the same time under the conditions given in 
the text. One of them has skis which are twice as wide as the other, but the same 
length. According to the model given here, will they both arrive at the same 
time? Whatever your answer, state to what property of friction, and/or to what 
assumption, this result is due, and discuss.

The validity of the expression found for the acceleration a may be checked 
by examining the sign of this variable. From zero initial speed, the skier starts 
his descent and hence the value for a must (at least at the start) be positive 
downwards, given the choice of orientation for the axis x0 . Does this impose 
some particular condition? Discuss. (consider the following experiment: if you 



Chapter 6

The relationship between different approaches  
to the same phenomenon

Under the heading of similar relationships between variables, the previous chapter 
reconciled some phenomena which appeared at first sight to be different. In a com-
plementary manner, this chapter will go into the theme of links: here we are dealing 
with a single phenomenon, or context at least, bringing our thoughts together. This 
will involve different approaches, especially in terms of the scale of the description 
used: macroscopic, mesoscopic, or even particle-based. Once again, the example 
will be taken from everyday life and the physics simple. 

6.1	 An instructional hot-air balloon 

With a touch of irony, we can define this “instructional hot-air balloon”. For such a 
balloon, the envelope open at the base defines an internal space of volume V, within 
which the air is at temperature Tint and pressure pint. The whole thing, including 
passengers, has mass mt. We should simplify, and temporarily forget, for example, 
the turbulence generated by the burners. Initially, the results will not suffer too 
greatly, and much will remain understandable. The outside must also be defined: 
air at atmospheric pressure (pext = p0) and at temperature Text. Very frequently70, 
equality of internal and external pressures is added to the model (pint = pext = p0), the 
rationale being that the envelope is open.

A standard solution relies on Archimedes’ principle: the upthrust due to the outside 
air on the whole ensemble is balanced by the weight of the volume V of the external 
air .71 This weight is yet to be evaluated, as is that of the internal air to balance the 
forces justifying the equilibrium required. The weights in question, corresponding to 
the same volume, are subsequently differentiated by different values for the density 

70	 By way of example: Giancoli D.C. (2005) Physics (6th edition): “Instructor Resource Center” 
CD-ROM, Prentice Hall.

71	 With respect to this value, neglecting that of the volume of the materials of the gondola and the 
suspension cords. 
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of air, itself related to the variables already introduced by the barely transformed 
ideal gas law: ρ RT

Mp= . In three or four lines of working facilitated by the equality 
of the pressure terms, temperatures (via their reciprocals) and the problem data can 
all be linked together.72 We are then in a position to know to what temperature the 
internal air must be heated to achieve lift-off, and subsequent stability once in the air. 

6.2	 Ritual: a pact with inconsistency? 

Should we be worried about the simplifications inherent in the common approach 
to this classically presented problem, in particular to first-year university students?

Yes, we should indeed. As we know, physics starts off by thinking of simplifica-
tions. However, here we encounter an assumption which, taken at face value, would 
send the balloon crashing to earth quicker than you could say ‘Archimedes’. If the 
pressures were the same at every point (“atmospheric pressure”), the resultant of 
the pressure forces acting on the envelope due to the gases present would be zero. 
Each part of the envelope would be subjected to two exactly opposite forces. Plus, 
no particular spatial direction would be preferred by these gases: why should they 
push upwards? Yet again, using Archimedes’ principle is to make use of the sine 
qua non of its relevance, namely the existence of pressure gradients, essential for 
hydrostatic problems where gravity is present. Between the level of the opening 
and that at the top of the balloon, the pressure of the outside air falls. Ditto for the 
air inside. However, as this is less dense, the pressure from bottom to top falls less 
quickly on the inside than on the outside. Starting from a value assumed identical at 
the level of the opening, the internal and external pressures are not equal elsewhere, 
in particular at the top of the balloon: the highest pressure is on the inside. We then 
begin to grasp that the envelope can be inflated and held airborne despite the weight 
of the whole thing. This analysis is summarised in Figure 6.1 and is illustrated by 
a strange balloon, cylindrical for reasons of formal economy: there is no need for a 
complicated integral to show (or even to formally verify) that Archimedes’ principle 
is consistent with a local analysis of the forces acting on the envelope. The global 

72	 For a balloon of total mass mc (for the solid parts), taking account of the density ρ of an ideal gas 

of (mean) molar mass M, ρ RT
Mp= , and from Archimedes’ principle, the Newtonian equilibrium is 

written: mc + R
M
T
p V R

M
T
p V

int
int

ext
ext= , i.e., assuming that the (mean) internal and external pressures 

are very close to their value p0 at the opening,  [1/Text – 1/Tint] = mc R / (p0MV). 
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analysis supported by the gradient theorem73 and its consequence in hydrostatics 
(the expression for the Archimedes’ interaction) unites the mechanical (local and 
more direct) balance of forces in play. Two approaches, each casting light on the 
other, compete for an understanding of the phenomenon. For many students (we will 
return to this) this was an opportunity to get to the nub of Archimedes’ principle. 

Δh

h

pint

pext

p

p

bottom 
opening

balloon top

∆pint = – ρint g ∆h
∆pext = – ρext g ∆h

pint  > pext

ρint  < ρext

pint = pext  

Figure 6.1 - Elements for understanding how a balloon is held 
airborne, here shown as a cylinder to facilitate understanding the 
effect of pressure forces on the envelope (see the text and note 73). 

6.3	 Two approaches for a single phenomenon

Let us pause here to consider the unusual nature of this analysis.

Several studies agree as to the reaction of individuals consulted on an exercise contai-
ning the assumption in question, namely, that “the pressure is everywhere the same”. 

73	 The gradient theorem, applicable to a closed surface S enclosing a volume V, and (here) to a scalar 
field p:   pd grad p dVS

VS
= #####  ; in a fluid of density ρ at equilibrium we have grad p = ρ g . 

Archimedes’ principle follows immediately. 
This principle leads to the relation [1/Text – 1/Tint] = mc R/(p0MV) (see previous note).
Another approach, here using a cylindrical balloon of height Δh; to first order we have at the 
upper level: pext ≈   p0 – ρ–ext  gΔh et pint ≈ p0 – ρ–int gΔh. The supporting force which acts on 
the upper horizontal face of area S, balances the weight of the solid parts if, and only if,  
mc g = (pint – pext) S, which leads to the same expression as that produced by the global treatment 
[1/Text – 1/Tint] = mc R/(p0MV).




