LA CAVITATION

MÉCANISMES PHYSIQUES ET ASPECTS INDUSTRIELS

Jean-Pierre FRANC – François Avellan Brahim Belahadji – Jean-Yves Billard Laurence Briançon-Marjollet – Didier Fréchou Daniel H. Fruman – Ayat Karimi Jean-Louis Kueny – Jean-Marie Michel

> Presses Universitaires de Grenoble 1995

La Collection Grenoble Sciences

La Collection Grenoble Sciences fut créée à l'Université Joseph Fourier avec un triple objectif :

- permettre d'offrir aux étudiants et usagers des ouvrages à des prix convenables,
- constituer une mémoire pour d'excellents documents qui restent souvent chez leurs auteurs,
- réaliser des ouvrages correspondant vraiment à un objectif clair, en contrepoint des ouvrages réalisés par rapport à tel ou tel programme plus ou moins officiel.

Les documents sont, pour la plupart, publiés dans le seul cadre de l'Université Joseph Fourier. Ceux qui sont destinés à un plus vaste public sont sélectionnés, critiqués par un comité de lecture et édités dans cette collection spécifique des Presses Universitaires de Grenoble.

Directeur de la Collection Grenoble Sciences

Jean BORNAREL, Professeur à l'Université Joseph Fourier - Grenoble 1

Comité de lecture de La cavitation:

J. BONNIN, anciennement Ingénieur en Chef à la Direction des Etudes et Recherches d'Electricité de France R. CANAVELIS, Directeur Général de GEC Alsthom Bergeron J. DODU, Professeur à l'Université Joseph Fourier - Grenoble 1 R. MOREAU, Professeur à l'Institut National Polytechnique de Grenoble Membre de l'Institut

Déja parus :

L'ergomotricité. Corps, travail et santé - M. Gendrier Chimie. Le minimum vital - J. Le Coarer Enzymes - J. Pelmont Mathématiques pour les sciences de la nature et de la vie - F. et J.P. Bertrandias Endocrinologie. Fondements physiologiques - S. Idelman Minimum competence in scientific English - J. Upjohn, S. Blattes et V. Jans Analyse numérique et équations différentielles - J.P. Demailly Introduction à la Mécanique statistique - E. Belorizky et W. Gorecki Exercices corrigés d'Analyse (tomes 1 et 2) - D. Alibert Bactéries et environnement. Adaptations physiologiques - J. Pelmont La plongée sous-marine à l'air. L'adaptation de l'organisme et ses limites - P. Foster Listening comprehension for scientific English - J. Upjohn Electrochimie des solides - C. Déportes et al. La Turbulence - M. Lesieur Exercices et problèmes corrigés de Mécanique statistique - E. Belorizky et W. Gorecki La symétrie en mathématiques, physique et chimie - J. Sivardière

A paraître :

L'Asie, source de Sciences et de Techniques - M. Soutif Introduction aux variétés différentielles - J. Lafontaine Devenir et effets du médicament dans l'organisme - P. Demenge

Nous remercions :

- La Direction de la Recherche et de la Technologie (D.R.E.T.) de la Délégation Générale pour l'Armement (D.G.A.) qui a financé de nombreuses recherches présentées dans cet ouvrage
- Le *Journal of Fluid Mechanics* qui a autorisé la reproduction des figures 4.8, 4.12 à 4.14 et 5.10 à 5.12.

Ont également contribué à cet ouvrage :

- Michel MARCHADIER et Jean-François VERDYS
 (Laboratoire des Écoulements Géophysiques et Industriels Grenoble)
- Mahmood HUSSAIN KHAN (Institut de Machines Hydrauliques et de Mécanique des Fluides - Lausanne)
- Janine INDEAU et Alain PAUCHET (École Nationale Supérieure des Techniques Avancées - Palaiseau)
- Sylvie BORDAGE, Claire DROT, Christiane GUIRAUDIE, Martine LAINÉ et Frédérique TEYRASSE (Centre Technique Grenoble Sciences)

AUTEURS

François AVELLAN

Professeur à l'École Polytechnique Fédérale de Lausanne Institut de Machines Hydrauliques et de Mécanique des Fluides

Brahim BELAHADJI

Laboratoire des Écoulements Géophysiques et Industriels Institut de Mécanique de Grenoble

Jean-Yves BILLARD

Officier de Marine Professeur à l'École Navale (Brest)

Laurence BRIANÇON-MARJOLLET

Responsable de la Division Cavitation Section Recherche du Bassin d'Essais des Carènes (Val de Reuil)

Jean-Pierre FRANC

Chargé de Recherches au Centre National de la Recherche Scientifique Laboratoire des Écoulements Géophysiques et Industriels Institut de Mécanique de Grenoble

Didier FRÉCHOU

Responsable des Moyens d'Essais Bassin d'Essais des Carènes (Val de Reuil)

Daniel H. FRUMAN

Professeur à l'École Nationale Supérieure des Techniques Avancées (Palaiseau) Chef du Groupe Phénomènes d'Interface

Ayat KARIMI

Professeur à l'École Polytechnique Fédérale de Lausanne Institut de Génie Atomique

Jean-Louis KUENY

Professeur à l'École Nationale Supérieure d'Hydraulique et de Mécanique de Grenoble Centre de Recherches et d'Essais de Machines Hydrauliques de Grenoble Institut National Polytechnique de Grenoble

Jean-Marie MICHEL

Directeur de Recherches au Centre National de la Recherche Scientifique Professeur à l'École Catholique d'Arts et Métiers de Lyon Laboratoire des Écoulements Géophysiques et Industriels Institut de Mécanique de Grenoble

EXTRAITS

Dans le cas d'une poche de cavitation développée en régime stationnaire, un phénomène semblable se produit. La température dans la cavité T_c est inférieure à la température du liquide à l'infini T_{∞} et la pression p_c dans la cavité, qui est égale à la pression de vapeur saturante $p_v(T_c)$ à la température T_c , est donc inférieure à la pression de vapeur saturante estimée à la température du liquide à l'infini T_{∞} . La valeur réelle du paramètre de cavitation basée sur la pression réelle dans la cavité :

$$\sigma = \frac{p - p_v(T_c)}{\frac{1}{2}\rho V^2}$$
(4.15)

est donc supérieure à celle basée sur la pression de vapeur saturante à la température T_{∞} . Le développement de la cavitation est donc moindre que celui auquel on pourrait s'attendre en négligeant les effets thermiques.

4.9.2. ANALYSE PHYSIQUE POUR UNE CAVITÉ EN RÉGIME STATIONNAIRE

Cette analyse est due principalement à Holl, Billet & Weir (1975). Elle est la suivante (figure 4.31).

Fig. 4.31. *Analyse physique de l'effet thermodynamique en cavitation par poche attachée*

Nous avons vu au paragraphe 4.6 que des fluctuations existent à l'arrière d'une poche qui tendent à arracher des structures de vapeur à la cavité. La vapeur ainsi soutirée est entraînée par l'écoulement et se condense à l'aval dans le sillage de la cavité. Nous désignons dans la suite par $\rho_v q_v$ le débit massique de vapeur soutiré de la cavité par unité d'envergure (ρ_v est la masse volumique de la vapeur et q_v son débit volumique).

Comme on suppose que la cavité existe de façon permanente, il faut qu'un débit massique égal de liquide soit prélevé sur l'écoulement liquide et se vaporise. Cette vaporisation qui se produit dans la partie amont de la cavité assure l'alimentation de la poche en vapeur et compense le débit de vapeur entraîné à l'arrière. Elle met en jeu la quantité de chaleur $\rho_v q_v L$ (L désigne la chaleur latente de vaporisation). Celleci ne peut être que soutirée à l'écoulement liquide, ce qui conduit au développement sur la cavité d'une couche limite thermique à travers laquelle la température du liquide chute de T_{∞} à T_c . Le problème est alors d'estimer l'écart de température $\Delta T = T_{\infty} - T_c$.

Plus ΔT est grand, plus le flux thermique soutiré au liquide par convection forcée est important. En pratique, la température T_c s'établit à une valeur telle que le flux thermique correspondant équilibre le flux de chaleur $\rho_v q_v L$ nécessaire à la vaporisation. Si, comme on le fait habituellement en convection, on introduit un coefficient d'échange thermique moyen h sur toute la longueur l de la cavité, le flux thermique soutiré à l'écoulement par unité d'envergure s'écrit h ΔT l. Le bilan thermique global est alors traduit par l'équation suivante :

$$\rho_{\rm v} q_{\rm v} L = h \,\Delta T \, l \tag{4.16}$$

d'où l'on tire l'expression de l'écart de température :

$$\Delta T = \frac{\rho_{\rm v} \, q_{\rm v} \, L}{h \, l} \tag{4.17}$$

En introduisant les nombres adimensionnels classiques suivants¹ :

le nombre de Nüsselt basé sur la longueur l de la poche :

$$Nu_{I} = \frac{hI}{\lambda}$$
(4.18)

 $(\lambda$ désigne la conductivité thermique du liquide).

le nombre de Reynolds basé également sur la longueur de la poche :

$$Re_{I} = \frac{V \ I \rho}{(4.19)}$$

(μ désigne la viscosité dynamique du liquide).

le nombre de Prandtl caractéristique du liquide seul :

$$\Pr = \frac{v}{a} \tag{4.20}$$

 $(v = \mu / \rho \text{ désigne la viscosité cinématique du liquide, a = <math>\lambda / \rho c$ sa diffusivité thermique et c sa chaleur massique).

¹ En ce qui concerne les notations, de façon générale, nous affectons de l'indice "v" les grandeurs relatives à la vapeur. Les grandeurs non indicées se réfèrent au liquide.

• un coefficient adimensionnel de débit défini par :

$$C_Q = \frac{q_v}{|V_{\bullet}|} \tag{4.21}$$

la relation 4.17 devient :

$$\Delta T = C_Q \frac{\text{Re}_{\text{I}} Pr}{\text{Nu}_{\text{I}}} \frac{\rho_v L}{\rho c}$$
(4.22)

Cette formule permet de calculer l'écart de température ΔT si l'on connaît, outre les propriétés physiques du liquide et de sa vapeur :

- le coefficient de débit C_Q caractérisant le débit de vapeur entraîné à l'arrière de la poche,
- et le nombre de Nüsselt caractéristique des échanges thermiques à l'interface.

Nous examinons dans les deux paragraphes qui suivent la démarche généralement adoptée pour estimer ces deux paramètres.

4.9.3. ESTIMATION DU COEFFICIENT DE DÉBIT CQ

Une méthode directe de mesure du débit de vapeur entraîné à l'arrière de la cavité est difficile à mettre en œuvre. Par contre, on peut en obtenir une estimation à partir d'essais de ventilation.

La technique consiste à injecter de l'air sur le profil et à ajuster le débit d'injection de telle sorte que la cavité d'air obtenue par ventilation ait la même longueur que la cavité de vapeur obtenue par cavitation vraie. Une similitude parfaite entre les deux situations n'est évidemment pas possible puisque dans le cas de la ventilation, on a affaire à un gaz incondensable qui se comporte différemment de la vapeur. Néanmoins, il s'agit d'une méthode simple permettant d'obtenir une première estimation du coefficient de débit C_Q.

La figure 4.32 donne un exemple typique de résultats d'essais de ventilation (Fruman *et al.* 1991). On y présente la variation du coefficient de débit en fonction de la longueur réduite l/c de la cavité. Aucune mesure n'a pu être réalisée pour des longueurs réduites supérieures à 0,5, les poches n'étant pas suffisamment stables dans ce cas. Les mesures, bien qu'assez dispersées, se répartissent autour d'une valeur moyenne de l'ordre de C_O \cong 0,0052.

Signalons que si l'on désigne par e l'épaisseur de la cavité et par V_v la vitesse moyenne de la vapeur transitant à l'arrière de la poche (voir figure 4.33), le coefficient de débit peut s'exprimer sous la forme :

$$C_Q = \frac{e}{l} \frac{V_v}{V_{\bullet}}$$
(4.23)

166

Fig. 6.27. Nombre critique de disparition en fonction du coefficient de portance pour trois ailes d'égale distribution de corde le long de l'envergure ; section droite NACA 16020 et deux vitesses de référence. D'après Fruman et al. (1994)

6.4.5. CORRÉLATIONS

Tenant compte de ce qui vient d'être présenté et des très nombreux paramètres, parfois difficilement quantifiables qui jouent un rôle non négligeable dans l'apparition et le développement de la cavitation de tourbillon marginal, on peut se poser la question de savoir s'il est possible d'établir des corrélations sous une forme aussi simple que celle qui est prévue par l'expression 6.20. La figure 6.27 montre clairement que l'utilisation du coefficient de portance au lieu de l'incidence ne conduit pas à une corrélation satisfaisante sauf pour le cas de l'aile à bord d'attaque droit. Dans le cas du plan porteur elliptique, les résultats obtenus à petit nombre de Reynolds, inférieurs à ceux de la transition laminaire-turbulente sur une plaque plane, sont très éloignés et bien inférieurs, à égal coefficient de portance, à ceux qui correspondent à des nombres de Reynolds élevés. Une représentation analogue des données de la figure 6.28, le même comportement. Il apparaît donc qu'il ne suffit pas de corriger les nombres de cavitation critiques par la pression résiduelle pour améliorer les corrélations.

Si les expériences sont conduites à de grands nombres de Reynolds, supérieurs à 10⁶, comme c'est le cas des données présentées sur la figure 6.18, les corrélations sont considérablement améliorées.

Fig. 6.28. Nombre de cavitation de disparition, basé sur la pression résiduelle, divisé par $\operatorname{Re}^{0,4}$ en fonction du coefficient de portance pour des essais effectués avec un plan porteur elliptique d'allongement AR = 3,8 et de section droite NACA 16020

La figure 6.29 montre $\sigma_{rd}/Re^{0,4}$ en fonction de C_L^2 pour les deux plans porteurs de la figure 6.24 et des nombres de Reynolds compris entre 2,4.10⁶ et 8,0.10⁶. Le comportement est linéaire dans la zone proche de l'origine mais avec des pentes différentes pour chacune des ailes. La pente qui correspond à l'aile NACA 16020 est plus grande que celle qui correspond à l'aile NACA 0020, mais les résultats de la première rejoignent ceux de la seconde pour $C_L \cong 0,6$. Il faut signaler cependant qu'au delà de cette valeur du coefficient de portance, le comportement de l'aile NACA 0020 n'est plus linéaire. Une présentation analogue à celle de la figure 6.29 a été proposée par Maines & Arndt (1993b) pour des résultats obtenus avec des plans porteurs elliptiques ayant des sections droites cambrées et avec le plan porteur NACA 16020. La corrélation des résultats est tout à fait satisfaisante pour chaque aile, mais il n'est pas possible d'établir un comportement "universel" comme Arndt & Dugué (1992) l'avaient espéré.

L'extrapolation des résultats d'essais de cavitation de tourbillon marginal à échelle réduite aux conditions réelles de fonctionnement pose encore, comme on vient de le voir, de nombreux problèmes. D'une manière générale, il semble qu'il soit difficile aujourd'hui, sinon impossible, de prévoir les conditions de cavitation de tourbillon marginal d'une aile connaissant celles d'une autre, de forme en plan et section droite différentes. Tout au plus, il paraît possible de le faire pour une même forme en plan et de sections droites différentes, à condition que les essais aient été effectués à des vitesses (nombres de Reynolds) suffisamment élevées pour rendre négligeables les biais introduits par les effets de la couche limite et de la pression résiduelle. Les recommandations du comité "Cavitation" de l'ITTC sont basées sur cette simple constatation.

Fig. 6.29. Nombre de cavitation de disparition, basé sur la pression résiduelle, divisé par $Re^{0,4}$ en fonction du coefficient de portance pour des essais effectués avec deux plans porteurs elliptiques d'allongement AR = 3,8 et de section droite NACA 16020 et NACA 0020. D'après Pauchet et al. (1994)

Du point de vue fondamental, les travaux les plus récents ont permis de montrer qu'en dépit du caractère fortement tridimensionnel de l'enroulement au voisinage immédiat de l'extrémité de l'aile, des mesures des vitesses tangentielles conduisent à une estimation raisonnable de la pression minimale sur l'axe du tourbillon marginal. D'une manière générale, il apparaît maintenant clairement établi que la valeur critique du nombre de cavitation est tout à fait comparable à la valeur absolue du minimum du coefficient de pression au centre du tourbillon. À titre d'exemple, la figure 6.30 montre quelques valeurs de σ_{vd} des trois plans porteurs de la figure 6.26 en fonction de Cp_{min} calculé par intégration numérique à partir des profils de vitesses tangentielles relevés aux mêmes vitesses et angles d'incidence dans la zone hors sillage du tourbillon marginal. Les écarts que l'on constate sont, en moyenne, inférieurs aux imprécisions des mesures expérimentales.

Fig. 6.30. Nombre de cavitation de disparition en fonction du minimum du coefficient de pression au centre du tourbillon marginal estimé par intégration numérique à partir des vitesses tangentielles pour trois ailes d'égale distribution de corde le long de l'envergure d'allongement AR = 3,8 et de section droite NACA 16020. D'après Fruman et al. (1994)

De nombreux auteurs (Green 1991 et Arndt *et al.* 1991) ont fait appel à des fluctuations de pression instationnaires (turbulentes) pour justifier les écarts constatés entre les valeurs de σ_{vd} et leurs estimations du minimum de pression, issues d'un seul profil de vitesses tangentielles obtenu à une distance de l'ordre d'une corde maximale en aval de l'extrémité des ailes. Le bon accord entre les valeurs de σ_{vd} et de – Cp_{min} de la figure 6.30, associé à d'autres résultats analogues, rend très peu probable toute contribution des fluctuations turbulentes à l'équilibre des inclusions gazeuses captées par les tourbillons marginaux.

D'après cette analyse, on peut considérer comme acquis que les conditions critiques de la cavitation du tourbillon marginal sont directement associées à la portance et à l'épaisseur de la couche limite du plan porteur. Cependant, la relation entre ces différents paramètres est beaucoup moins simple que l'expression 6.20 le laissait espérer et moins universelle qu'il serait souhaitable du point de vue prévisionnel.

6.4.6. INHIBITION DE LA CAVITATION DU TOURBILLON MARGINAL

McCormick (1962) s'est déjà intéressé au problème posé par l'*inhibition* de la cavitation du tourbillon marginal et a proposé de rendre localement *rugueuse* l'extrémité des ailes de manière à provoquer un épaississement de la couche limite, et

11.2. Quelques tunnels hydrodynamiques français **ET ÉTRANGERS**

11.2.1. LE GRAND TUNNEL HYDRODYNAMIQUE DU BASSIN D'ESSAIS DES CARÈNES (VAL DE REUIL)

Année de mise en service : 1986		Puissance installée : 1800 kW	
Sections d'essais			
2 veines en parallèle	petite veine		grande veine
configuration de veine	veine fermée		veine fermée ou veine à surface libre
dimensions	1,14 m × 1,14 m × 6 m		2 m × 1,35 m × 10 m
taux de convergence	10		4,8
vitesse maximale	20 m/s		12 m/s
débit maximal	26 m ³ /s		32 m ³ /s
nombre de Reynolds (basé sur une hélice de diamètre 50 cm)	107		6.10 ⁶
pression	(),1 à 5 bars	0,1 à 2 bars
σ minimal (au centre de la veine)	0,09		0,24

Caractéristiques particulières

Dimension des modèles essayés :

- hélices de 200 à 500 mm de diamètre ;
- carènes de bâtiments de surface ou de submersibles jusqu'à 7 m de longueur.

Dispositif de réglage de la teneur en air dissous jusqu'à 20% de la saturation à la pression atmosphérique.

Dispositif d'injection de germes jusqu'à des concentrations de quelques germes/cm³.

Niveau de bruit de fond des veines d'essais très bas.

