Relativité générale et astrophysique

Problèmes et exercices corrigés

Denis Gialis et François-Xavier Désert

17, avenue du Hoggar Parc d'Activité de Courtabœuf - BP 112 91944 Les Ulis Cedex A - France

Table des matières

Chapitre 1 – Introduction à la géométrie différentielle	1
1.1. Courbes et vecteurs tangents	1
1.2. Géodésiques sur la sphère S_2	2
1.3. Métrique induite	5
1.4. Pseudo-sphère en dimension 3	6
1.5. Dualité métrique	8
1.6. Quadri-vecteurs de genre lumière, temps et espace	10
1.7. Dérivée de Lie	12
1.8. Changement de coordonnées dans l'espace-temps	16
1.9. Changement de coordonnées et élément de volume	17
1.10. Equations des géodésiques et principe variationnel	19
1.11. Unicité de la connexion de Levi-Civita	23
1.12. Courbes auto-parallèles	28
1.13. Géodésiques nulles	29
1.14. Transport parallèle	31
1.15. Produit extérieur et formes différentielles	33
Chapitre 2 – Géométrie et calcul tensoriel	39
2.1. Equation des géodésiques et vecteur tangent	39
2.2. Critère de tensorialité	42
2.3. Dérivée covariante seconde	43
2.4. Tenseur de Levi-Civita	44
2.5. Caractérisation de la courbure	46
2.6. Courbure de la sphère S_3	48
2.7. Courbure et élément de surface	49
2.8. Relations tensorielles	53

2.9. Propriétés du tenseur de courbure	55
2.10. Platitude conforme	58
2.11. Vecteurs de Killing	59
2.12. Propriétés du tenseur de Weyl	62
2.13. Déviation géodésique	65
2.14. Tétrades et tenseur de Riemann	67
2.15. Dérivée de Fermi-Walker	71
2.16. Hypersurfaces de l'espace-temps	74
2.17. Equations de Gauss et Codazzi	80
2.18. Comparaison de courbures	84
Chapitre 3 – Espace-temps et mesure	87
3.1. Mesure des distances et des intervalles de temps	87
3.2. Energie dans un champ gravitationnel constant	90
3.3. Référentiel d'un observateur en rotation	92
3.4. De l'inconvénient des voyages spatiaux	94
3.5. Décalage vers le rouge gravitationnel	98
3.6. Gravitation en champs faibles	99
3.7. Champ gravitationnel terrestre et géolocalisation	102
3.8. Période de rotation d'un pulsar	105
Chapitre 4 – Espace-temps de Schwarzschild	109
4.1. Espace-temps statique à symétrie sphérique	109
4.2. Détermination de la métrique de Schwarzschild	111
4.3. Horizon des événements	116
4.4. Energie et moment cinétique orbital	117
4.5. Courbure de l'espace-temps de Schwarzschild et effet de marée	119
4.6. Géodésiques dans l'espace-temps de Schwarzschild	123
4.7. Mirages gravitationnels et anneaux d'Einstein	134
4.8. Avance du périhélie de Mercure	137
4.9. Vitesse et énergie dans l'espace-temps de Schwarzschild	140
4.10. Collapse gravitationnel d'une étoile massive	
4.11. Trous noirs, trous blancs et changement de coordonnées	145
4.12. Métrique de Schwarzschild en coordonnées isotropes	150

Table des matières IX

Chapitre 5 – Espace-temps de Kerr	153
5.1. Singularité et limites de la métrique de Kerr	153
5.2. Géodésiques nulles et coordonnées de Kerr-Schild	157
5.3. Formalisme 3+1 et métrique axisymétrique	162
5.4. Surface limite de stationnarité	169
5.5. Horizon et ergorégion d'un trou noir de Kerr	171
5.6. Processus de Penrose	174
5.7. Mesures d'un FIDO autour d'un trou noir de Kerr	176
5.8. Géodésiques dans l'espace-temps de Kerr	183
5.9. Orbite circulaire stable autour d'un trou noir de Kerr	191
5.10. Extraction d'énergie d'un trou noir de Kerr	194
5.11. Précession gyroscopique	198
5.12. Collision de particules près d'un trou noir de Kerr	205
Chapitre 6 – Ondes gravitationnelles	211
6.1. Equation d'Einstein linéarisée	211
6.2. Ondes gravitationnelles et jauge TT	216
6.3. Onde gravitationnelle et particules libres	220
6.4. Formule du quadripôle	224
6.5. De la source stationnaire à la limite newtonienne	227
6.6. Emission et perte d'énergie d'un système binaire	231
Chapitre 7 – Champs et matière	239
7.1. Tenseur énergie-impulsion et flux d'impulsion	239
7.2. Champs faibles et équation de Poisson	241
7.3. Dualité de Hodge et équations de Maxwell	243
7.4. Force de Lorentz et tenseur de Maxwell	246
7.5. Propriétés du tenseur énergie-impulsion	250
7.6. Rayonnement et luminosité d'une étoile compacte	255
7.7. Nuage de poussière	260
7.8. Transformation de jauge	261
7.9. Equations de Tolman-Oppenheimer-Volkoff	263
7.10. Equations de Arnowitt, Deser et Misner	268
7.11. Formalisme $3+1$ et champ électromagnétique	275
7.12. Magnétosphère d'un trou noir de Kerr	283

Chapitre 8 – Cosmologie	291
8.1. Métrique de Friedmann-Robertson-Walker	291
8.2. Géométrie d'hypersurfaces spatialement isotropes en tout point	295
8.3. Courbure de l'Univers et géodésiques	298
8.4. Dynamique de l'Univers et équations de FRW-Lemaître	302
8.5. Paramètre de décélération et densités réduites	310
8.6. Distance angulaire et distance de luminosité	314
8.7. Horizon cosmique et taille de l'Univers	316
8.8. Age de l'Univers et paramètre d'échelle	317
8.9. Voyage intergalactique	319
Formulaire abrégé de relativité générale	323
Quelques constantes astrophysiques	343
Bibliographie	344
Index	349