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The hydrogen molecular ion (HMI), the simplest mo-
lecular system, was studied in the early days of quantum
mechanics. The demonstration that this species had, in agree-
ment with experiment, a stable ground state corresponding to a
bond between two atoms, was one of the early achievements
of quantum theory. Classical mechanics could not predict a
stable state for H2

+.
The molecular orbital method, in the form of a linear

combination of atomic orbitals (LCAO-MO method), was
proposed at that time; its first application was to the HMI.
Many other approximate treatments were then devised and
applied to H2

+ (see e.g. ref 1).
Burrau (2) showed that the confocal elliptic coordinate

system allowed the complete separation of the HMI Hamil-
tonian, thus paving the way toward an exact solution. This
task was taken up by several investigators, including Burrau
himself, Teller (3), Jaffé (4 ), and Hylleraas (5). They showed
that the energy of any state of the HMI could be found by
solving two coupled differential equations. Various methods
of solution were proposed, all involving rather complicated
expansions in series of associated Legendre functions. These
led in turn to three term recurrence relations, from which
intricate eigenvalue equations followed. In practice the ener-
gies could only be found numerically; formulas to compute
the expansion coefficients were also given. More recently,
electronic computers have replaced humans and the energy
of the HMI can be obtained in this formalism to at least seven
significant figures (6–9).

The analytical solution of the HMI problem is mentioned
in most textbooks dealing with molecular structure, usually
with few details. Notable exceptions are Pauling and Wilson
(1), Slater (10), and Levine (11). The present-day student
can only get a glimpse of the method used, unless he or she
chooses to read the original literature, at the risk of being

drowned in a morass of complicated algebra. Further, in con-
trast to the LCAO–MO method, the analytical approach can
hardly be generalized to other species. These facts explain
why it is usually given short shrift in textbooks. Yet with the
advent of powerful and inexpensive microcomputers, it
should be possible for a student to repeat some of these com-
putations and gain some feeling for the behavior of the HMI
quantum system. It is the purpose of the present report to
show that this goal is effectively within reach. We show here
how the Schrödinger equation may be solved, keeping the
required mathematics as simple as possible and letting the
computer do most of the work. A similar point of view is
taken by Press et al. (12). As we shall see, we will be able to
obtain at once very accurate values of the wave function and
of the energy and, in the process, learn how conserved quan-
tities and quantum numbers are handled for a problem with
cylindrical or D∞h symmetry.

This report should be of interest to advanced under-
graduates in physical chemistry; it could be used as a start-
ing point for a computational chemistry project. It may also
be of historical interest to a wider audience.

The Molecular Hamiltonian in Spheroidal Coordinates

The Schrödinger equation describing the motion of an
electron in the field of two infinitely massive protons HA and
HB located at points A and B, a distance D apart on the z
axis (Fig. 1) is, in Slater’s notation,

     �∇ 2 – 2
rA

– 2
rB

ψ r = Eψ r (1)

where rA and rB are the distances from the electron to the
two protons. Following Slater, we use a system of atomic units
in which the unit of energy is the rydberg or 13.6 eV; the
unit of length is the radius of the first Bohr orbit, 0.529 Å.

It is necessary to introduce prolate confocal elliptic coordi-
nates, ξ = (rA + rB)/D, η = (rA – rB)/D, and ϕ, which is the
angle of rotation about the nuclear axis. The inverse relations
are rA = D(ξ + η)/2 and rB = D(ξ – η)/2; we note that 2/rA =
4/[D(ξ + η)], 2/rB = 4/[D(ξ – η)]. The meaning of these defi-
nitions becomes clear when we examine elliptic coordinates
in a plane. The lines of constant ξ are ellipses, which share
foci A and B. The lines of constant η are hyperbolas, again
with A and B as foci. These two families form an orthogonal
system of curves (see Fig. 1). The variable ξ plays a role analo-
gous to r, the distance to the origin, in the usual polar coordi-
nate system. When η increases, the point (ξ ,η) moves around
the origin, so that this parameter is similar to the quantity
cos θ in polar coordinates. The domains of each variable
are �1 ≤ η ≤ 1 and 1 ≤ ξ ≤ ∞. On the part of the z axis that
lies between A and B, rA + rB = D, so that ξ = 1, while �D ≤
rA – rB ≤ D, and �1 ≤ η ≤ 1. To the right of B (z  ≥ 1 ), η = 1;
and η = �1 to the left of A (z ≤ �1 ).
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Figure 1. Definition of planar confocal elliptic coordinates
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Prolate ellipsoidal coordinates in space are obtained by
rotating the figure around the z axis. The ellipses generate a
set of confocal ellipsoids, while the hyperbolas generate a
family of hyperboloids with two sheets. Surface of constant
ϕ are half-planes though the x axis.

The derivation of the Laplacian operator in elliptic co-
ordinates is found in several texts (10, 13, 14 ) and will not
be repeated here. The volume element in spheroidal coordi-
nates turns out to be

    dV = D3

8
ξ2 – η2 dξ dη dϕ (2)

The Laplacian is

     
∇ 2= 4

D2 ξ2 – η2 � ∂
∂ξ ξ2 – 1 ∂

∂ξ +

∂
∂η 1 – η2 ∂

∂η + 1
ξ2 – 1

+ 1
1 – η2

∂2

∂ϕ 2�
(3)

Using the relation

   1
rA

+ 1
rB

= 4
D

ξ
ξ2 – η2

Schrödinger’s equation now reads, after some simple re-
arrangements

  
   ∂

∂ξ ξ2 – 1
∂ψ
∂ξ + ∂

∂η 1 – η2 ∂ψ
∂η +

1
ξ2 – 1

+ 1
1 – η2

∂2ψ
∂ϕ2

+ c2 ξ2 – η2 + 2Dξ ψ = 0
(4)

with
  c2 = 1

4
ED2 (5)

According to the separation of variables method, we seek
a solution of the form ψ = R(ξ)S (η)eimϕ. By analogy with the
atomic case, we have assumed an explicit form of the ϕ de-
pendence and introduced a so-called separation constant, m.
Inserting in eq 4, putting ∂2ψ/∂ϕ2 = �m2ψ, and dividing
throughout by the product RSeimϕ, we find that the various
terms can be grouped in ξ- and η- dependent parts:

   1
R

ξ2 – 1 R′ ′ – m2

ξ2 – 1
+ 2Dξ + c2ξ2 +

1
S

1 – η2 S′ ′ – m2

1 – η2
– c2η2 = 0

(6)

In order for this equation to hold for any value of ξ and η,
the expressions within the two braces must be constant and
of opposite sign. Calling Λ the value of the ξ-dependent part,
we see that the previous equation breaks into two:

   ξ2 – 1 R′ ′ + 2Dξ + c2ξ2 – m2

ξ2 – 1
– Λ R = 0 (7)

   1 – η2 S′ ′ + Λ – m2

1 – η2
– c2η2 S = 0 (8)

The parameter Λ is another separation constant. These are the
two differential eigenvalue problems that we must solve to ob-
tain the energies and eigenfunctions of the hydrogen molecular
ion. In order that ψ be a continuous and single-valued function
of ϕ, m must be an integer: m = 0, ±1, ±2, … .

The S(η) or angular equation has been studied in detail.
Many of the properties of its solutions (the spheroidal wave
functions) have been collected by, for example, Abramovitz
and Stegun (15) and Flammer (16 ). Thompson has proposed
an extremely accurate algorithm to compute them (17 ). Our
notation is identical to that of Abramovitz and Stegun. The
R(ξ) or radial equation only appears in the HMI problem.
The quantity c 2 can be positive or negative (in which case c
is purely imaginary). We will restrict ourselves to bound states,
with negative E and c 2. The corresponding S(η) functions
are then called “oblate” spheroidal functions.

When c 2 goes to zero, eq 8 becomes identical to the dif-
ferential equation for the associated Legendre polynomials,
which has the known eigenvalues Λ = �(� + 1). One must be
a little bit more careful when looking at the limit of eq 7.
We can write ξ = 2u/D, change variables, and then let D → 0,
taking into account that c 2 ξ2 = Eu2. The result is

   
u2 – D2

4
R′

′
+ 4u + Eu2 – Λ – m2D2

4u2 – D2
R = 0

which converges to the radial equation for the helium ion (Z = 2)

    �R′′ – 2
uR′ – 4

uR = ER

A consequence of these remarks is that the numerical treat-
ment of eq 7 will be rather inaccurate in the region of small
D because then c 2 will be very small for every value of E.

There are some further differences between the present
problem and the case of the hydrogen atom, the main one
being that two eigenvalues are simultaneously involved: E and
Λ. In a simple approach, one can solve one of eqs 7 or 8 to get a
relation between c 2 and Λ and then substitute in the other
equation to determine the remaining parameter. A second
difference is related to the physics of the problem. Because of
the cylindrical symmetry, Lz is the sole conserved quantity
apart from the energy, its eigenvalue being m; Λ, which would
seem to be analogous to �(� + 1) of the atomic case, is not
the eigenvalue of any observable. In fact, its allowed values
can be positive as well as negative. This raises the following
question. Suppose that the two protons start moving toward
each other and eventually coincide, to form a helium nucleus.
The wave function must distort and end up being identical
with a Z = 2 atomic function. Is there a parameter that can
help in classifying the molecular wave functions and retains
its significance in the atomic limit? Yes, there is: the number of
nodes of S(η). As the molecular ion shrinks, the wave function
deforms adiabatically, keeping the same number of nodal
surfaces. This number is equal to � for atoms. The same
reasoning applies to the radial factor. The number of nodes is
conserved in the united atom limit, where it is equal to n – 1, n
being the atomic radial quantum number.

http://jchemed.chem.wisc.edu/Journal/
http://jchemed.chem.wisc.edu/Journal/Issues/2002/Jan/
http://jchemed.chem.wisc.edu/


Research: Science and Education

JChemEd.chem.wisc.edu  •  Vol. 79  No. 1  January 2002  •  Journal of Chemical Education 129

Numerical Solution

We will attempt to solve eqs 7 and 8 by numerical means,
without relying on much previous specialized knowledge.
Some computational details are given in the Appendix.

The Angular Function
We begin with eq 8. The factor (1 – η2) vanishes at both

ends of the domain of η. This means that we have to solve a
singular Sturm–Liouville problem (12, 18, 19). Proceeding
as explained (18), we put η = �1 + u and look at the behavior
of S(η) close to the singular point at η = �1. After clearing
denominators, the equation for S becomes

u2(u � 2)2S′′+ 2u(u � 1)(u � 2)S′+ [c2u(u � 1)2(u � 2) - Λu(u � 2) � m2]S = 0

Next we assume a series solution for S of the form

S = up(a0 + a1u + a2u2 + …)

where a0 ≠ 0. When we insert this expansion into the previous
equation, we find that the term of lowest degree in u is pro-
portional to up, with coefficient a0(4p2 – m2). The index p
must therefore satisfy the indicial equation 4p2 = m2. Bounded
solutions will only be obtained for positive p, p = |m|/2. A
similar derivation holds for η close to 1, with the same index
value. We now define a new unknown function, f (η), by

S(η) = (1 – η2)m/2f (η) (9)

where f will be well behaved over the whole domain of η. By
direct substitution, it is found that f is a solution of the fol-
lowing problem:

  (1 – η2)f ′′  – 2(m + 1)ηf ′  – [m(m + 1) – Λ + c 2η2] f = 0 (10)

We are now in a position to apply a numerical algorithm
to the solution of eq 10. We will use a result from the math-
ematical theory: the parity of the functions S(η) and f (η) is
that of (�1)n�m, if n is the number of nodes. In practice we
search for solutions of given axial symmetry (given m) and
assumed energy. Bonding states will have negative energies
(c 2 ≤ 0) and we will encounter levels of alternating parity
with increasing E. We use the shooting method (12, 19), with
starting points η = ±1. We choose f (1) = 1 and f (�1) = ±1,
depending on the required parity. The limiting form of eq
10 when η → ±1 allows us to write

    f ′ 1 =
m m + 1 + c 2 – Λ

2 m + 1
f 1

f ′ �1 = ±
m m + 1 + c 2 – Λ

2 m + 1
f 1

(11)

We require that f and its first derivative be continuous at η.
For even functions, the first condition is always fulfilled,
whereas the second is always true for odd solutions. The
effective constraints are thus

  f ′(0 + ε) = f ′(0 – ε), even f ;   f (0 + ε) = f (0 – ε), odd f (12)

We describe in detail the case of the lowest-energy, bond-
ing state. The wave function will presumably be without any

node, so that we assume m = 0. When D = 1, we should be
reasonably close to the united atom limit, with E = �Z 2/n2 = �4.
A trial-and-error process, using c 2 = �1, as implied by eq 5,
converges to Λ = �0.3486. Figure 2 shows the first stages of
such an iteration, as reflected by the shape of f (η). We repeat
the process for decreasing values of c 2. The search can be
automated, using a simple root-seeking algorithm such as the
bisection method. Since we intend to use the functional
relation between c 2 and Λ to solve the radial equation, we
need about a dozen pairs of values of these parameters. While
it would be possible to find the Λ that corresponds to an
arbitrary value of c 2 by interpolation, we find it more conve-
nient to fit a fourth-degree polynomial to these data by a
linear least squares method. In the united atom limit, D = 0
so that c2 = 0 and Λ = 0, as befits an s state. Therefore, the
fitting polynomial should appear as

Λ = a1(c2) + a2(c2)2 + a3(c 2)3 + a4(c 2)4 (13)

The coefficients, determined over the range �1 ≥ c 2 ≥ �35—
which allows 0 ≤ D ≤ 12, a convenient span of internuclear
distances—are

a1 = 0.3127477;     a2 = �0.0231669

a3 = �0.0005110;    a4 = �0.0000045

The first excited state will again be axially symmetric, but
will have an odd f. At large internuclear separation, its energy
should be close to that of a 1s hydrogen atom (E ≅  �1) while
tending to that of a 2p state (E ≅  �1) in the united atom
limit (� = 1, one node). The electronic energy should thus
be rather insensitive to D. Using c 2 = �1, we discover a solu-
tion for Λ = 1.393205 . A typical search for an eigenvalue is
shown in Figure 3. We track this root for decreasing c 2 and
finally fit a polynomial to the results. The constant term must
be a0 = 2, since Λ converges to the value �(� + 1) of a 2p
state. Λ is observed to be an almost linear function of c 2, so

Figure 2. Shooting toward an eigenvalue of the angular equation:
the symmetric case. Plots of S(η) are shown with, from top to bottom,
Λ = �1.8, �1.7, �1.6, �1.5, �1.4. The best value is �1.59449.
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that a cubic was chosen. The coefficients for the range �1 ≥
c 2 ≥ �35 are

a0 = 2.000000;       a1 = 0.6043499

a2 = �0.0061888;    a3 = 0.0000589

The angular part of the wave function for any other state
of the HMI can be found using this procedure. In order to
gain time, values of c 2 and Λ could be read from the tables
of Abramovitz and Stegun, the computer being used only to
obtain the wave function.

The Radial Equation
We seek solutions of eq 7, using a process similar to that

of the last section. Here again, the equation seems to blow
up at ξ = 1. The cure should by now be familiar. We shift the
origin, putting ξ = 1 + u, and look for a solution of the form
R(ξ) = ξp(a0 + a1ξ + a 2 ξ  + …). The indicial equation is the
same as previously and the index p is equal to |m|/2. Intro-
ducing the new function g(ξ  ) by

R(ξ) = g(ξ) (ξ2 – 1)m/2 (14)

we find that g(ξ) must be a solution of

   (ξ2
 – 1)g′′  + 2(m + 1)ξ g ′ + [2Dξ + c2ξ2 + m(m + 1) – Λ]g = 0 (15)

We again solve this differential eigenvalue problem by the
shooting method. Boundary conditions at ξ = 1 are g (1) = 1,
which ensures a smooth joining of S and R along the ξ axis,
and a value of g′(1) derived from the differential equation

    g′ 1 = �
2D + c 2 + m m + 1 – Λ

2 m + 1
(16)

We first choose a value of D. Then, we replace Λ by one
of the polynomial expressions in c2 found in the previous
subsection. Equations 15 and 16 now comprise a single un-
known parameter, c2 or E. The domain of ξ being infinite,
we choose a cutoff distance, ξmax ≅  10, where we require that

|g(ξmax)| ≅  0. The progress of a typical search is shown graphi-
cally in Figure 4, as plots of the functions g(ξ).

The process is repeated for several D values in order to
build an energy versus internuclear distance curve, and for
the two lower states, symmetric and antisymmetric.

Accuracy
A general theory of the accuracy of shooting algorithms is

available (19), but is beyond the scope of this paper. We will
limit ourselves to some empirical remarks. The computations
were run in double precision (roughly 13-digit accuracy). For
the angular equation, we recover the results tabulated by
Abramowitz and Stegun (15) (6-digit accuracy) provided the
integration step is not larger than 10�4. The least-squares fit
introduces some error (2 × 10�4 energy units or 3 meV). If
necessary, this error can be reduced by interpolating on a finer
grid. The eigenvalues of the radial equation are not so well
defined, mainly because we use a cutoff distance. Tests with
increasing cutoffs show that the energy should be accurate
to four digits if an exact value of Λ is used.

Some Results

The symmetric, lowest-energy state is usually designated
as the molecular 1σg state. The correlated state in the united
atom limit (1s) may also be mentioned. The antisymmetric wave
function belongs to the 1σu state (sometimes called 2pσu).

The energies of these levels are shown as functions of D
in Figure 5. We recall that the limiting values for D → 0 are
�4 and �1 Ry, respectively and �1 Ry for D → ∞. The total
molecular energy is obtained by adding the coulombic re-
pulsion between the nuclei (2/D) to the previous quantities.
This is shown in Figure 6. The 1σg state has a minimum for
D = De ≅  2, with a binding energy of �1.2 Ry. The very ac-
curate calculations of Schaad and Hicks (9) give De = 1.9972,
for a total energy of �1.205269238 Ry. In contrast, the energy
of the 2p σu level is seen to be monotonically decreasing; this
state is nonbonding or dissociative.

Figure 4. Searching for an eigenvalue of the radial equation. Func-
tion R(ξ) with, from bottom to top, E = �2.1, �2.2, �2.202, �2.205,
�2.21, �2.3 Ry. The best value is �2.20218 Ry.
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The complete wave functions are products of the relevant
R(ξ) and S(η) factors. Along the molecular axis, as explained
previously, ψ = R(ξ) on the right of B, ψ = S(η) between A and
B, and ψ = ± R(ξ) to the left of A, the sign being chosen ac-
cording to the state symmetry. Figure 7 shows ψ for D = 1.5.
Rather than displays of ψ(ξ,η), we find it more informative
to plot the electron density, |ψ|2, as in Figures 8 and 9. These
demonstrate rather strikingly the surplus of negative charge
in the internuclear region, responsible for bonding, and the
nodal plane of the antibonding orbital.

The HMI may also be studied within the LCAO–MO
formalism. The simplest wave function, a linear combination
of 1s atomic orbitals, leads to a binding energy of �1.13 Ry. It is
only when about 100 basis functions are included that the
energy accuracy becomes comparable to that of the present
approach. Ready-made software for these computations may
be found on the Internet (20, 21).

Conclusion

We have shown how a well-known but rather involved
quantum mechanical problem can be completely solved
numerically, using free software and a desktop computer. We
found that the main difficulty in this undertaking was the
comprehension of the equations and of the respective roles of

Figure 6. Total energy of the HMI; units and conventions are those
of Figure 5.
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the various parameters. Running the programs for different
values of D, Λ, and E provides valuable insight. Several
extensions of these calculations are possible. Higher states of the
HMI can be investigated. As shown by Wilson and Gallup (22),
heteronuclear diatomic ions are amenable to this formalism. The
HMI is currently the subject of active theoretical (23) and
experimental investigations (24 ). Some conclusions of the
simple treatment have been proven to be incorrect. Particu-
larly, the 2p σu state is now known to possess a shallow long-
range potential minimum (24 ).
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Appendix: Computational Details

All computations reported in this article were done using the free
software Scilab (25), which incorporates routines to solve initial
value problems and to plot graphs of functions of one or several
variables.

Algorithms for solving differential equations operate on first-
order equations or systems of equations. The first task in computing
R(ξ) and S(η) consists in transforming the relevant second-order
equations into systems of two first-order equations. This is easily
done at the price of a change of function. Consider the case of R;
it is determined through the auxiliary function g(ξ). We introduce
the vector of unknowns [z1(ξ), z2(ξ)] defined as z1(ξ) = g(ξ) and
z2(ξ) = g ′(ξ). Equation 15 takes the form

z1(ξ)′  = z2(ξ)

    
z2 ξ ′ =

� 2 m + 1 ξz2 ξ + 2Dξ + c2ξ2 + m m + 1 – Λ z1 ξ
ξ2 – 1

The program operates on discrete values. We choose a step
size, h, and initial and final values of ξ and create a vector of
abscissas {Xk}, numbered from 1 to n. The program will generate
approximations to z1 and z2, in the form of two arrays Z1,k and
Z2,k, k = 1, …, n. The program should start at X1 = 1, where the
initial conditions (see eq 16) apply. This leads to a division by zero
in eq 15, so that we start the actual computation at X2 = h, using
the known slope at X1 to set the values of Z1,2 and Z2,2. At the end,
we insert the correct values of Z1,1 and Z2,1.

The definition and solving of eq 15 are taken care of in a few
lines of code by Scilab. A double slash (//) indicates a comment. If
z is a vector, z′ is the transposed vector. Input and output state-
ments have been deleted.
//radial equation in terms of vector z
deff(“[zdot]=g(x,z)”,...
“zdot=[z(2); (-2*(m+1)*x*z(2)-(2*D*x+m*(m+1)-

L+c2*x*x)*z(1))/(x*x-1)]”)
step = 0.001;
x0=1+step;
x=x0:step:10; //abscissas, starting at point next to1.
c2=D*D*E/4;
//L(c) for an antisymmetric f
L=(((-6.373E-7*c2-0.0001053)*c2-

0.0071351)*c2+0.5992722)*c2+1.9994397;
//initial conditions
slope = -(-L+m*(m+1)+2*D+c2)/(m+1)/2;
z0=[1+step*slope,slope]’;
//solve differential equation
z=ode(z0,x0,x,g);
//compute R from z
temp=x.*x-1;
temp=temp.^(m/2);
//extract values of g
zz=temp.*z(1,:);
//insert missing values

zz=[1,zz];xt=[1,x];

According to the shooting method, we run this program for
various values of E while watching Z1,n. We stop when this quan-
tity is smaller than a prescribed threshold.

The code needed to solve the angular eq 10 is quite similar,
except that the two cases of even and odd f must be considered
separately and we shoot from both ends of the interval, inward,
and try to comply with eq 12.

The same software incorporates a least-squares fitting routine,
allowing an easy computation of the polynomial regression of Λ
versus c 2.
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